\(\lambda - \text{Fuzzy Subgroup} \)

Sowmya K., Sr.Magie Jose

Abstract: As an extension to Rosenfeld’s definition of a fuzzy subgroup, a new kind of subgroup called \(\lambda \)-fuzzy subgroup of a group is defined and properties are studied. The image and preimage of a \(\lambda \)-fuzzy subgroup under homomorphism are also studied.

Keywords: Fuzzy Subgroup; \(\alpha - \text{Fuzzy Subgroup} \); \(\lambda - \text{Fuzzy Subgroup} \); Homomorphism.

2010 MSC: 03E72, 08A72, 20N25.

INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [7] in 1965. Rosenfeld [4] introduced the notion of a fuzzy subgroup of a group \(G \). Since then, many authors gave generalization to the concept [1], [5], [6]. In [5], Sharma defined a \(\alpha - \) fuzzy subgroup as follows.

A fuzzy set \(A \) in a group \(G \) is called a \(\alpha - \) fuzzy subgroup of \(G \) if

\[A^\alpha(xy) \geq A^\alpha(x) \land A^\alpha(y) \]

\[A^\alpha(x^{-1}) = A^\alpha(x) \quad \forall x, y \in G \quad \text{and} \quad \alpha \in [0,1] \]

where \(A^\alpha = A(x) \Delta \alpha \).

But then any fuzzy set \(A \) in a group \(G \) is a \(\alpha = 0 \) fuzzy subgroup of \(G \), which we think to be modified. So we introduce another kind of fuzzy subgroup called \(\lambda - \) fuzzy subgroup.

The other motivation include to generalize Rosenfeld’s fuzzy subgroup, with minimum number of appearance of the parameter (if any). The second condition in the definition of a \(\lambda - \) fuzzy subgroup resulted from the thought that whenever \(A(x) \geq \lambda \), implies \(A(x^{-1}) \geq \lambda \). Similarly \(A(x) \leq \lambda \) implies \(A(x^{-1}) \leq \lambda \).

II. PRELIMINARIES

We review some basic definitions and results.

Definition 2.1 [7] A fuzzy set \(A \) in a set \(X \) is a function \(A : X \rightarrow [0,1] \).

Definition 2.2 [2] If \(A \) is a fuzzy set in a set \(X \), then for any \(t \in [0,1] \), the set \(A_t = \{ x \in X : A(x) \geq t \} \) is called a level subset of \(A \).

Definition 2.3 [7] If \(A \) and \(B \) are two fuzzy sets in a set \(X \), then their intersection \(A \cap B \) is defined as

\[(A \cap B)(x) = A(x) \land B(x), \quad \forall x \in X. \]

Definition 2.4 [7] Let \(f \) be a function defined on a set \(X \). Let \(A \) be a fuzzy set in \(X \) and \(B \) be a fuzzy set in \(f(X) \). Then the image of \(A \) under \(f \) is defined by

\[f(A)(y) = \max_{x \in f^{-1}(y)} A(x) \quad \forall y \in f(X). \]

If \(f \) is bijective, then \(f(A)(y) = A(x) \).

The preimage of \(B \) under \(f \) is defined by,

\[f^{-1}(B)(x) = B(f(x)) \quad \forall x \in X. \]

Definition 2.5 [4] A fuzzy set \(A \) in a set \(X \) has the Sup property if, for any subset \(T \subseteq X \), there exists \(t_0 \in T \) such that

\[A(t_0) = \sup_{t \in T} A(t). \]

Definition 2.6 [4] A fuzzy set \(A \) in a group \(G \) is a fuzzy subgroup of \(G \) if

\[(i) \ A(xy) \geq A(x) \land A(y) \quad \text{and} \quad (ii) \ A(x^{-1}) = A(x), \quad \forall x, y \in G. \]

Definition 2.7 [5] Let \(A \) be a fuzzy set in a group \(G \) and \(\alpha \in [0,1] \). Then \(A \) is called a \(\alpha - \) fuzzy subgroup of \(G \) if \(A^\alpha(xy^{-1}) \geq A^\alpha(x) \land A^\alpha(y) \quad \forall x, y \in G \), where \(= A(x) \Delta \alpha \).

Submit your manuscript electronically for review.

A. Final Stage

When you submit your final version, after your paper has been accepted, prepare it in two-column format, including figures and tables.
III. \(\lambda\) - Fuzzy Subgroup and its Properties

Here, for an abstract group \(G\), we define a \(\lambda\) - fuzzy subgroup and list some of its properties.

Definition 3.1 Let \(A\) be a fuzzy set in a groupoid \(G\) and \(\lambda \in (0,1]\). Then \(A\) is said to be a \(\lambda\) - fuzzy subgroupoid of \(G\) if

\[A(xy) \geq A(x) \land A(y) \land \lambda \]

Definition 3.2 Let \(A\) be a fuzzy set in a group \(G\) and \(\lambda \in (0,1]\). Then \(A\) is said to be a \(\lambda\) - fuzzy subgroup of \(G\) if

(i). \(A(xy) \geq A(x) \land A(y) \land \lambda \)

(ii). \(A(x) \land A(x^{-1}) \geq A(x) \land A(y) \land \lambda \) \(\forall x, y \in G\).

Remark 3.1 We define the zero fuzzy set in a group \(G\) defined by \(0(x) = 0\), \(\forall x \in G\) to be the only 0 - fuzzy subgroup of \(G\). So, by a \(\lambda\) - fuzzy subgroup of a group \(G\), we mean a non-zero fuzzy set in \(G\).

Remark 3.2 \(\lambda = 1\) leads to Rosenfeld’s fuzzy subgroup of \(G\), i.e., every Rosenfeld’s fuzzy subgroup is a \(\lambda\) - fuzzy subgroup. But the converse need not be true. For example: Let \(G = \{1, -1\}\) be a group under ordinary multiplication. A fuzzy subset \(A\) is defined as \(A(1) = 0.4, A(-1) = 0.6\). Then \(A\) is not a fuzzy subgroup of \(G\), for

\[(A \cap A) (xy) = A(xy) \land A(x^{-1}) \geq (A(x) \land A(y)) \land \lambda = (A \land A) (x) \land (A \land A) (y) \land \lambda.

Also,

\[(A \cap A) (x^{-1}) \land (A \cap A) (x) = (A \land A) (x^{-1}) \land (A \land A) (x) \]

\[= (A \land A) (x^{-1}) \land (A \land A) (x) \land (A \land A) (x) \land \lambda.

It follows that,

\[(A \land A) (x^{-1}) \land (A \land A) (x) \geq (A \land A) (x) \land (A \land A) (x) \land \lambda

Corollary 3.1. Intersection of a family of \(\lambda\) - fuzzy subgroups of a group \(G\) is again a \(\lambda\) - fuzzy subgroup of \(G\).

Result:

\[0.4 = A(1) < A(-1) \land A(-1) = 0.6.

Take \(\lambda = 0.4\), then

\[0.4 = A(1) \geq A(-1) \land A(-1) \land 0.4\]

It can also be verified that \(A(xy) \geq A(x) \land A(y) \land 0.4\) and \(A(x) \land A(x^{-1}) \geq A(x) \land 0.4\) holds \(\forall x, y \in G\).

Theorem 3.1. If \(A\) is a \(\lambda\) - fuzzy subgroupoid of a finite group \(G\), then \(A\) is a \(\lambda\) - fuzzy subgroup of \(G\).

Proof. Let \(x \in G\). Since \(G\) is finite, it is possible to find a positive integer \(n\) such that \(x^n = e\), where \(e\) is the identity in \(G\). Hence \(x^{-1} = x^{n-1}\).

Now,

\[A(x^n) = A(x^{n-1}) = A(x) \land A(x^{-1}) \geq A(x) \land A(y) \land \lambda = A(x) \land A(y) \land \lambda.

i.e., \(A(x^{-1}) \land A(x) \geq A(x) \land A(y) \land \lambda = A(x) \land A(y) \land \lambda\).

Thus, \(A\) is a \(\lambda\) - fuzzy subgroup of \(G\).

Theorem 3.2. Intersection of two \(\lambda\) - fuzzy subgroups of a group \(G\) is again a \(\lambda\) - fuzzy subgroup of \(G\).

Proof. Let \(A_1\) and \(A_2\) are two \(\lambda\) - fuzzy subgroups of a group \(G\).

Remark 3.3. The union of two \(\lambda\) - fuzzy subgroups of a group \(G\) may not be a \(\lambda\) - fuzzy subgroup of \(G\).

Example: Let \(G = \mathbb{Z}\), the set of integers under ordinary addition. Define two fuzzy sets in \(G\) by

\[A(x) = \begin{cases} 0.6, & \text{if } x \in 3\mathbb{Z} \\ 0, & \text{otherwise} \end{cases}\]

\[B(x) = \begin{cases} 0.2, & \text{if } x \in 2\mathbb{Z} \\ 0, & \text{otherwise} \end{cases}\]

Then \(A\) and \(B\) are \(\lambda\) - fuzzy subgroups of \(G\)

\(\forall \lambda \in (0,1]\), in particular \(\lambda = 0.5\).
Now, \((A \cup B)(x) = \begin{cases}
0.6, & \text{if } x \in 3Z \\
0.2, & \text{if } x \in 2Z - 3Z \\
0, & \text{if } x \in 3Z, x \in 2Z
\end{cases}\)

Let \(x = 3, y = 8\). \((A \cup B)(3) = 0.6, (A \cup B)(8) = 0.2\), but, \((A \cup B)(x) < \Lambda (A \cup B)(3) \Lambda (A \cup B)(8) \Lambda 0.5\), i.e., \(A \cup B\) is not a \(\lambda\)-fuzzy subgroup of \(G\).

From now onwards \(e\) denotes the identity element in \(G\).

Theorem 3.3. Let \(A\) be a \(\lambda\) – fuzzy subgroup of a group \(G\). Then \(A(e) \neq 0\) for any non-zero fuzzy set \(A\) in \(G\).

Proof. For \(x \in G\),

\[A(e) = A(xx^{-1}) \geq A(x) \Lambda A(x^{-1}) \Lambda \lambda = A(x) \Lambda \lambda,\]

by condition (ii) in the Definition of a \(\lambda\) – fuzzy subgroup.

Also, if \(A \neq 0\), then \(A(x) > 0\), for some \(x \in G\). Hence \(A(e) \neq 0\).

Corollary 3.2. By the above theorem,

\[A(e) \Lambda \lambda \geq A(x) \Lambda \lambda, \quad \forall x \in G.\]

Theorem 3.4. If \(A\) is a \(\lambda\) – fuzzy subgroup of a group \(G\), then

\[A(xy^{-1}) = A(e) \Rightarrow A(x) \Lambda A(y) \Lambda \lambda \geq A(y) \Lambda \lambda, \quad \forall x, y \in G.\]

Proof. If \(A\) is a \(\lambda\) – fuzzy subgroup of \(G\), for all \(x, y \in G\),

\[A(x) = A(xy^{-1})y \geq A(xy^{-1}) \Lambda A(y) \Lambda \lambda = A(e) \Lambda A(y) \Lambda \lambda \geq A(y) \Lambda \lambda, \quad \forall x, y \in G.\]

by theorem 3.3.

Corollary 3.3. If \(A\) is a \(\lambda\) – fuzzy subgroup of a group \(G\),

\[A(xy^{-1}) = A(e) \Rightarrow A(x) \Lambda A(y) \Lambda \lambda \geq A(y) \Lambda \lambda, \quad \forall x \in G.\]

Proof. For a \(\lambda\) – fuzzy subgroup \(A\) of \(G\),

\[A(y) \geq A(y) \Lambda A(x) = A(y) \Lambda A(xy^{-1}) = A(xy^{-1}) \Lambda A(x) \Lambda \lambda \geq A(xy^{-1}) \Lambda A(x) \Lambda \lambda \Lambda \lambda \geq A(xy^{-1}) \Lambda A(x) \Lambda \lambda \Lambda \lambda\]

Hence, \(A(y) \Lambda \lambda \geq A(x) \Lambda \lambda\).

By the above theorem, \(A(x) \Lambda \lambda \geq A(y) \Lambda \lambda\). It follows that \(A(x) \Lambda \lambda = A(y) \Lambda \lambda\).

Theorem 3.5. Let \(A\) be a fuzzy set in a group \(G\) and let \(\mathbf{p} = \inf \{A(x) : x \in G\} \neq 0\). Then \(A\) is a \(\lambda\) – fuzzy subgroup of \(G\) for all \(\lambda \leq p\).

Proof. For \(x, y \in G\),

\[A(x) \Lambda A(y) \geq A(xy) \Lambda \lambda \]

\[\forall x, y \in G.\]

Also, since \(A(x^{-1}) \Lambda \lambda = \lambda, \quad A(x) \Lambda A(x^{-1}) \geq A(x^{-1}) \Lambda \lambda = \lambda\)

Hence, \(A\) is a \(\lambda\) – fuzzy subgroup of \(G\).

Theorem 3.6. Let \(t \in [0, 1]\), \(A(e) \geq t\) and \(A\) be a \(\lambda\) – fuzzy subgroup of \(G\). Then the level subset \(A_t\) is a subgroup of \(G\).

Proof. Clearly, \(A\) is non empty. Let \(x, y \in A_t\), then

\[A(x) \geq t, A(y) \geq t.\]

Since \(A\) is a \(\lambda\) – fuzzy subgroup of \(G\),

\[A(xy) \geq A(x) \Lambda A(y) \Lambda \lambda \geq t.\]

This means \(xy^{-1} \in A_t\). Therefore, \(A\) is a \(\lambda\) – fuzzy subgroup of \(G\).

Theorem 3.7. Let \(G\) be a group and \(A\) be a fuzzy set in \(G\) such that \(A_t\) is a subgroup of \(G\) for all \(t \in [0, 1]\).

Proof. Let \(x, y \in G\) and let \(A(x) = t_1\) and \(A(y) = t_2\). Then \(x \in A_{t_1}, y \in A_{t_2}\). Let us assume that

\[A(xy^{-1}) = A(e) \subset A_{t_1} \cap A_{t_2}.\]

Thus \(x, y \in A_{t_1} \cap A_{t_2}\). Hence, \(xy \in A_{t_1} \cap A_{t_2}\). Therefore, \(A(xy) \geq t_1 = A(x) \Lambda A(y) \Lambda \lambda \).

Also, \(x \in G\) and \(A(x) = t\). Then \(x \in A_t\).
Since A_t is subgroup of G, $x^{-1} \in A_t$, which implies $A(x^{-1}) \geq t$.

Now $A(x) \land A(x^{-1}) \geq A(x) \land \lambda = t$ where $\lambda = k$.

Thus A is a $\lambda = k$ - fuzzy subgroup of G.

Theorem 3.8. A fuzzy set A in a group G is a λ - fuzzy subgroup of G if and only if

$A(xy)^{-1} \geq A(x) \land A(y) \land \lambda$.

Proof. Suppose A is a λ - fuzzy subgroup of G. Then

$A(xy)^{-1} = A(xy^{-1}y^{-1}) \geq A(xy^{-1}) \land A(y^{-1}) \land \lambda \geq A(xy^{-1}) \land A(y) \land A(y^{-1}) \land \lambda \geq A(x) \land A(y^{-1}) \land A(y) \land \lambda \geq A(x) \land A(y) \land \lambda \land \lambda$,

by the repeated application of conditions (i) and (ii) of a λ - fuzzy subgroup.

Conversely, let $A(xy^{-1}) \geq A(x) \land A(y) \land \lambda$, for a fuzzy set A in G.

Then $A(xy) = A(x(y^{-1})^{-1}) \geq A(x) \land A(y^{-1}) \land \lambda$.

Therefore,

$A(xy) \land A(y) \geq A(x) \land A(y^{-1}) \land \lambda \land A(y) \geq A(x) \land A(y) \land \lambda$.

by condition (ii) of a λ - fuzzy subgroup.

But then, $A(xy) \geq A(x) \land A(y) \geq A(x) \land A(y) \land \lambda$.

Also,$A(y^{-1}) = A(y)^{-1} = A(e) \land A(y) \land \lambda \geq A(y) \land \lambda$,

using theorem 3.3.

Hence, $A(y^{-1}) \land A(y) \geq A(y) \land A(y) \land \lambda$.

Theorem 3.9. Let A be the characteristic function of a non-empty subset H of a group G. Then A is a λ - fuzzy subgroup of G if and only if H is a subgroup of G.

Proof. Clearly, A is a fuzzy set in G. First, let A be a λ - fuzzy subgroup of G.

For $x, y \in H, A(x) = A(y) = 1$.

Now, $A(xy) \geq A(x) \land A(y) \land \lambda = A(xy) = 1$. Thus, $xy \in H$.

Also,$A(x^{-1}) \land A(x^{-1}) \geq A(x) \land \lambda = A(x^{-1}) = 1 \Rightarrow x^{-1} \in H$.

Therefore, H is a subgroup of G.

Conversely, if H is a subgroup of G, then its characteristic function is fuzzy subgroup of G and hence is a λ - fuzzy subgroup of G.

IV. HOMOMORPHISM AND λ - FUZZY SUBGROUPS

Theorem 4.1. A homomorphic preimage of a λ - fuzzy subgroup of a group G is a λ - fuzzy subgroup of G.

Proof. Let $f : G_1 \rightarrow G_2$ be a group homomorphism. Let B be a λ - fuzzy subgroup of G_2.

For $x_y \in G_2$, $(f^{-1}(B))(xy) = B(f(xy)) = B(f(x)f(y)) \geq B(f(x)) \land B(f(y)) \land \lambda = (f^{-1}(B))(x) \land (f^{-1}(B))(y) \land \lambda$.

Also,(f^{-1}(B))(x^{-1}) \land (f^{-1}(B))(x) = b(f(x^{-1})) \land B(b(f(x))) = B(f(x^{-1}) \land B(f(x)) \land \lambda.

Thus, $f^{-1}(B)$ is a λ - fuzzy subgroup of G_1.

Theorem 4.2. Let A be a λ - fuzzy subgroup of a group G. If $f : G_1 \rightarrow G_2$ is a bijective homomorphism, then $f(A)$ is a λ - fuzzy subgroup of the group G_2.

Proof. Let $f(x), f(y) \in G_2$. (since, $f(G_1) = G_2$). Let $f(A) = B$.

Then $B(f(x)f(y)) = B(f(xy)) = A(xy) \geq A(x) \land A(y) \land \lambda = B(f(x)) \land B(f(y)) \land \lambda$.

Also,$B(f(x^{-1})) \land B(f(x)) = B(f(x^{-1})) \land B(f(x)) = A(x^{-1}) \land A(x)$.

Hence, $A(x) \land A(y) = B(f(x)) \land \lambda$, proves that A is a λ - fuzzy subgroup of G_2.

Theorem 4.3. A homomorphic image of a λ - fuzzy subgroup of a group G which has the Sup property is a λ - fuzzy subgroup of G.

Proof. Let $f : G_1 \rightarrow G_2$ be a group homomorphism and A be a λ - fuzzy subgroup of G_2, $f(A) = B$.

Let $f(x), f(y) \in f(G_1)$. Let $x_0 \in f^{-1}(f(x)), y_0 \in f^{-1}(f(y))$ such that

$A(x_0) = \sup_{t \in f^{-1}(f(x))} A(t), \quad A(y_0) = \sup_{t \in f^{-1}(f(y))} A(t)$.

Now, since $x_0 y_0 \in f^{-1}(f(xy))$,
\[B(f(x)f(y)) = \sup_{z \in f^{-1}(f(x)f(y))} A(z) = \]
\[\sup_{z \in f^{-1}(f(x)f(y))} A(z) \geq A(x_0y_0) \geq A(x_0) \wedge A(y_0) \wedge \lambda = B(f(x)) \wedge B(f(y)) \wedge \lambda. \]

Also,
\[B(f(x)^{-1}) \wedge B(f(x)) = \]
\[\sup_{t \in f^{-1}(f(x)^{-1})} A(z) \wedge \sup_{t \in f^{-1}(f(x))} A(z) \geq A(x_0^{-1}) \wedge A(x_0) \geq A(x_0) \wedge \lambda = B(f(x)) \wedge \lambda, \text{proves the theorem}. \]

V. CONCLUSION

In this paper we find some sets in fuzzy and its properties and some structures of that sets.

REFERENCES

AUTHORS PROFILE

Sowmya K., *Research Scholar and assistant professor in, St.Mary’s College, Thrissur, Kerala, India. Pin:680020*

Dr Sr. Magie Jose, Associate Professor, Post Graduate and Research Department of Mathematics, St.Mary’s College, Thrissur, Kerala, India. Pin:680020