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ABSTRACT--- ldentification and verification of hard written
signature from images is major issue. This is very difficult as
even human eye does not have that much visual ability to identify
every detail of the in handwritten. Signature changes every time
so it is difficult for humans to identify the original and forged
ones. By using deep learning which uses the sophisticated is
digital configured replica of human brain, we can identify the
forgery done in signature with higher accuracy.

Index Terms — deep learning, digital configured replica,
forgery, signature

I. INTRODUCTION

The robustness of human brain has always been an
enigma and this has caused people to replicate it digitally.
The human eye has a great efficiency of recognition due its
architecture. This inspiration has led to people constructing
artificial neural network and so deep learning.

In this we generally are going to assess the ways a human
being would give his signature using some deep learning
algorithms and artificial neural networks by which we can
train the system accordingly and verify if the signature is
real or forged. It would be a great way to authenticate the
signatures and verify them accordingly. It would be a better
option to verify the signatures using this model rather than
visual recognition through human eye which have a high
chances of making a mistake.

Il. SIGNATURE VERIFICATION

2.1 Offline Signature Verification:

Verification of signatures with features which are already
present is called as offline signature verification. The
features are very simple and basic and the image scanned
through a camera should follow certain methods for
verification. Design of these kind of systems is difficult as
there will be less features available.

2.2 Nature of Human Signature:

Human signatures are generally generated by the inbuilt
functions of the human neuromuscular area which induces
rapid movements. This system will largely consist of
neurons and muscle and fibers which make us know that the
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velocity of the hand produces the equation. So signatures for
every person are unique. In this model we can assess the
person who will give the signature and train our model
accordingly.

2.3 Types of Forgeries:

Forgeries of signatures are classified into three types as
mentioned below and we will solve and try to prevent all
this forgeries in our model.

2.3.1Random forgery:

A signature which is forged and it may be the genuine
signature of other person.

1.3.2 Casual Forgery :

A signature forgery in which the one who is doing the
forgery will know the name of the victim

1.3.3 Skilled Forgery:

As the name suggests a person who is skilled professional
is forging signatures is involved in forging the signatures.

I11. NEURAL NETWORK OUTLINE:

A system which does computing and is combines with
basic, and highly coincidental processing elements which
use the data to get a highly relevant and faster response from
the inputs taken. Artificial neural network models are a
subpart of the machine learning models which are motivated
by the functioning of the brain. Neural networks generally
work like the neurons of the brain and the connected
neurons will work in a network process to collect and
process the data for providing the necessary output. There
will be an input layer to the system which consists of all the
patterns in which the system should process and also the
necessary inputs and it communicates with the hidden layer
as shown in the below figure and the hidden layers use the
patterns and inputs by the input layer and are used to find
out a relevant function for the task to be performed and then
they communicate with the output layers to display the final
output.

Feedforward mechanism:

This mechanism does not form circles like many artificial
neural networks. This mechanism goes in a single way from
the input to the hidden layers to the output and do not form
any loops or circles in the process.
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IVV. PROPOSED METHODOLOGY :

In our proposed method we will construct a neural
network by optimizing some existing neural networks and it
will have a use the data structure tree along with nodes
similar to human eye which has neurons and it used for
recognition of patterns. There are several steps involved in
our method and it goes as following.

V. IMPLEMENTATION

5.1 Pre-processing:

In image processing application, pre-processing is
required to remove discrepancies, from the input image.
Signatures are changed to greyscale, using following
equation as:

Grey color = (8, 114*%8Lue )+ (8.299*Red) + (8.5876%Green)

The important factor in preprocessing stage is to build
standard signature which is prepared for extraction of
features. The pre-possessing stage includes:

5.1.1 Image scaling:

Let H = input image height & W= input image width. The
image can be fit to 100*100 pixels by applying the
equations:

i = (holi ! 160
fie 15 coloolate

i

X coongte and Kalc arls the origingl £ comcinate
R

d

e = {17
ey 15 csleulated 1 coorctnate and Yold ards the original 1 coonrate
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With the above equations,the image is scaled to a uniform
100*100 pixels image.

5.1.2 Normalization of signature:

It is possible that signature can be fractured due to
imperfections in image scanning and capturing. It is also
possible that the dimensions of signature can vary from
person to person and even the same person can sometimes
have different sizes based on the mood and environmental
factors. So a process is required to overcome the size
variation problem and achieve a standard signature size for
all signatures.

We also need to preserve the characteristic ratio between
height and width of a signature.

After performing the normalization process, all the
signatures will have the similar dimension. Normalization
process is done based on the below equations

Vrew = [ (Yold-fmin)/ (Ymax-Tmin)|*H
dnew = [ (Yold-Mrin)/ (¥max-min)|*0
Xold and Yold are coordinates for oripinal Input signature,
¥new and Ynew are coordingtes for normalized signature,
I = Width or height meant to the normalized signature

5.1.3 Thinning:

It is possible that the signature is written on different pen
and the thickness thus varies from one pen to another. The
purpose of thinning is to eliminate thickness differences in
signature by making all of them one pixel thick. Thinning is
used to enhance the object’s global properties and to
transform the input image into a compact form.

5.2 Feature Extraction:

This method is used for extracting the necessary and
essential features from the input image. A feature vector is
created from the features extracted. Each signature has a
unique feature vector. These features are extracted as
follows

The feature extraction module uses moment invariants to
extract texture features of the image using central moment
and derived invariant moment. The central moment, p, with
respect to the centroid, and the normalized central moment,
are calculated as:

te = 0. 2, =x) (=) a,

(U
n, =—4%4_
prq (11100)/1
where. A = M+1.(p +q)>2
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VIIL. RESULT AND PERFORMANCE: 8.3.2 Confusion Matrix from testing:

8.1 ROC GRAPH:
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