Automatic Detection of Abnormalities in Retinal Blood Vessels Using DTCWT, GLCM Feature Extractor and CNN-RNN Classifier

Revathi priya Muthusamy, S. Vinod, Assistant Professor, M. Tholkapiyan,Professor

Abstract: In worldwide, retinal diseases are found to be frequent cause of blindness for working age population in western countries. So, early diagnosis can prevent the blindness. We develop a system for the early diagnosis of retinal disease. The images with different colour variation inside the eye is compared by using images taken laser camera with high definition. These images are termed as fundus images. Images processing technologies are employed as follows: The feature extraction of the fundus images can be obtained by using the software tool MATLAB. Automatic screening will help to quickly identify the condition of the patients in a more accurate way. The 4-level discrete wavelet transform is used to decompose the image into various sub-bands. The textural features had been calculated using GLCM features, and the classification is done by using CNN-RNN Neural networks. The processed output will be displayed using Matlab GUI. Experimental result proves that the abnormality in the blood vessels and exudates can be effectively detected by applying this method on the retinal images. 76% of test cases are correctly classified.

Keywords: Retinal, Funds image, MATLAB, DTCWT, GLCM, CNN-RNN.

I. INTRODUCTION TO RETINA AND BLOOD VESSELS

Fig 1. Undilated Pupil and Fundus image

Retina is the tissue which senses light, it lies in the backside of the eye.

Revised Manuscript Received on March 25, 2019.

Revathi priya Muthusamy, Computer Science and Engineering, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, 42,Alamathi Road,Avadi,Thiruvallur, Chennai, Tamil Nadu 600062, India.

S. Vinod, Assistant Professor, Computer Science and Engineering, Vel Tech Multi Tech Dr.Rangarajan, Dr.Sakunthala Engineering College, 42,Alamathi Road,Avadi,Thiruvallur, Chennai, Tamil Nadu 600062, India.

Dr. M. Tholkapiyan,Professor, Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tandalam, Chennai 602105, India.

II. IMAGE PROCESSING USING DTCWT, GLCM AND RNN

Fig 2 Flowchart-Image processing of abnormalities in Retina

Image Pre-processing:

In this step, the retinal image is taken as an input and processed to RGB plane separation. Preprocessing consists of de-noising and enhancement steps. De-noising refers to the process employed for removing the noise that exists in the image; enhancement indicates a process used for increasing the image contrast. Here, the input image has speckle noise.(1) The speckle noises generally degrades segmentation process and decreases image quality. It will increase the difficulties of image segmentation. So the speckle noise should be removed to achieve the accurate segmentation. For removing the speckle noise, median filter is exploited for removing the speckle noise. The filter process is given below. Median filter is used to de-noising and smoothen the image without removing edges or sharp features in the images (3). After de-noising, the input image is re-sized to the particular dimension. The input image has separated into red, green and blue planes from this the green plane is taken as an input for next level processing.
The grey level co-occurrence matrix of all sub-band’s are calculated to arrive at resulting values which can be processed to arrive at the Final result of the feature vector.

In the above proposed method, DT-CWT dual tree - complex wavelet transform has to be first employed onto the raw image and we can obtain the sub-images at six different directions. After which the GLCM calculation is done for each sub image and thus the final resultant feature vector is constructed. This experimental results shows that this proposed method can achieve better accuracy with high texture classification than other conventional method and has the property of robustness.

Classification

The classification is done by using neural networks, here we will be using combination of convolutional neural networks with Recurrent Neural networks concepts (2). CNN detects patterns and makes sense out of them. CNN has Hidden layers called convolution layers, convolutional layers transforms the signal and passes on to the next layer. With each convolution layer, we specify the number of filters. Filters are used detect the patterns. The patern may be edges, corners, circles or squares. More sophisticated objects like ear, eyes can be detected. The output of the convolution layer is passed as input to the filters of the next layer.

The main use of Recurrent neural network is in the field of image recognition. The RNN is a network which has recurrent network connections. The traditional feed forward neural network does not provide good results for Times series/ sequential data such as Stock prices, video streams etc. They do not model memory. (6) RNN captures information from sequences and time series data. They can work with variable size input and work with variable size data. The concepts of Convolution neural network is also incorporated by adding recurrent connections to each convolutional network layer. This can also be called as recurrent convolution layers (RCL).

Feature extraction: Dual Tree - Complex Wavelet Transform (DTCWT), enhanced directional selectivity and phase information properties of redundant CWT results in the super-resolved image. By using dual tree wavelet transform, the input image had been decomposed into sub-bands, these sub-bands is further fed as a input for GLCM (Grey level co-occurrence matrix) feature extraction which is a texture based feature descriptor.

Fig 4 . Basic structure of a Recurrent Neuron

RNN recursive formula

\[S_t = F_w(S_{t-1}, X_t). \]

\[X_t - Input \ at \ time \ step \ t \]

\[S_t - State \ at \ time \ step \ t \]

\[F_w - Recursive \ Function \]

RNN learns using Back propagation through time. RNN uses three to four layers maximum.

Dataset:

The dataset downloaded form the database of Indian Diabetic Retinopathy Image Dataset (IDRIID) and two public datasets STARE and DRIVE were used.

III. EXPERIMENTS AND RESULTS

100 images were used for training the tool using the training function TRAINSCG. We can evaluate our techniques by calculating three metrics: (i) Root- Mean Square Error (RMSE) (ii) Pearson Correlation Co-efficient (CC) and (iii) Concordance Correlation Co-efficient (CCC). The Concordance Correlation Coefficient calculates and measures the agreement between the two variables using the below expression:

\[\rho_c = \frac{2\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2} \]

where \(\rho \) is Pearson correlation co-efficient, \(\sigma^2 x, \sigma^2 y \) variance of the predicted , ground truth value respectively , \(\mu_x, \mu_y \) – respective means. The highest CCC value can be used to select the strongest method

Table 1. Comparison of Performance between:

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [13]</td>
<td>0.147</td>
<td>0.358</td>
<td>0.273</td>
</tr>
<tr>
<td>CNN</td>
<td>0.121</td>
<td>0.341</td>
<td>0.242</td>
</tr>
<tr>
<td>CNN+AD</td>
<td>0.113</td>
<td>0.426</td>
<td>0.326</td>
</tr>
<tr>
<td>CNN+AD</td>
<td>0.125</td>
<td>0.349</td>
<td>0.270</td>
</tr>
<tr>
<td>CNN+AD</td>
<td>0.118</td>
<td>0.405</td>
<td>0.309</td>
</tr>
<tr>
<td>CNN+RNN - tanh</td>
<td>0.111</td>
<td>0.518</td>
<td>0.492</td>
</tr>
<tr>
<td>CNN+RNN - RelU</td>
<td>0.108</td>
<td>0.554</td>
<td>0.506</td>
</tr>
</tbody>
</table>

Table 2: CNN RNN performance with increasing no. of layers

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN+RNN - W=100 - 1 layer</td>
<td>0.107</td>
<td>0.553</td>
<td>0.481</td>
</tr>
<tr>
<td>CNN+RNN - W=100 - 2 layers</td>
<td>0.111</td>
<td>0.514</td>
<td>0.459</td>
</tr>
<tr>
<td>CNN+RNN - W=100 - 3 layers</td>
<td>0.106</td>
<td>0.565</td>
<td>0.489</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

The Authors sincerely thank the chairman of VelTech group of institution Col.Prof. Dr.Vel Sri.R.Rangarajan, Chairperson and Managing Trustee, Director for their encouragement to prepare this review. They further extends sincere thanks to Principal and Head of the department of Information Technology of Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College for their constant support at every stage to complete this review.

REFERENCES

2. Retinal Vessel Segmentation via A Coarse-to-fine Convolutional Neural Network, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
3. Segmenting Retinal Vessels with a Multi-scale Modified Dolph-Chebyshev Type I Function Matched Filter,2018 4th International Conference on Science and Technology (ICST)
4. Feature Extraction Method of Retinal Vessel Diameter,Conference: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (ICCBES)
7. Diabetic Retinopathy and Diabetic Macular Edema.
11. Mobile assisted diabetic retinopathy detection using deep neural network, 2018 Global Medical Engineering Physics Exchange/Pan American Health Care Exchanges (GMEPE/PAHCE)

AUTHORS PROFILE

Revathi priya Muthusamy was born in Coimbatore, Tamilnadu, India in 1982. She received her Bachelors degree in Electronics and Communication Engineering from Bharathiar University, India in 2003. In 2003 she joined as Software Engineer in Information technology field and she has around 8 years of experience in SAP ABA Programing. She is currently studying Master of Engineering in Computer Science and Engineering at VelTech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Chennai, Tamilnadu, India. She has also presented a Seminar in University of Freiburg, Switzerland in Image processing and Human Computer Interface and did courses on Web Engineering, Human Computer Interface and Pervasive Computing. Her areas of interests includes Image processing, Human Computer Interface, Pervasive Computing, DBMS and Enterprise resource planning.

S.Vinod received the Undergraduate Degree in Computer Science and Engineering from Anna university, in 2007, the Post Graduate degree in software Engineering from Anna university. He has more than 05 publications in National, International Conference. He has more than 3 years of teaching experience. His areas of interest include Wireless Sensor Networks, Mobile Communication, Mobile Computing, Mobile Adhoc Networks, Computer Networks, Network Security, High Speed Networks, Network and Data Security, Software Engineering, DBMS and etc., He is currently working as Assistant Professor in the Department of Computer science and Engineering at Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College Chennai, India.
M. Tholkapiyan was born in Mayiladuthurai, Tamil Nadu, India in 1973. He received the B.E. degree in Civil Engineering from Madurai Kamaraj University, India, in 1995, and the M.E in Water Resources Engineering from College of Engineering, Anna University in 1997. In 1997, he joined the Department of Civil Engineering, SRM Easwari Engineering college as Lecturer and in 2002 became an Assistant Professor. In 2009 he joined Ph.D Program in Department of Hydraulic and Ocean Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India and received the degree in 2013. He has been currently working as professor in Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105. His current Research Include Remote Sensing, Image Processing, Water Resources Engineering, Construction Management. Dr. M. Tholkapiyan is a life Member of the Indian Society for Technical Education (ISTE) and Indian Concrete Institute. He has also obtained Certification course on Maritime and Oceanic Studies at Yokohama National University, Center for Oceanic Studies and Integrated Education, Sponsored by Government of Japan.