An Automated Process of Monitoring and Control on Multivariable Non-Linear Greenhouse Environment

Vinothkumar. C, Marshiana. D, Balasankar Karavadi

Index terms: greenhouse environment, labview, ldr, co2 sensor, humidity sensor, temperature sensor, crop cultivation.

I. INTRODUCTION

By increasing human population the demand for basic things such as food, water is increasing day by day. Due to this ever increasing demand there is much pressure on the available resources. Numerous territories on the planet have a restricted measure of water accessible and the problem is bound to get worse due to population growth and climate change [1]. With the image as portrayed in the above as a main priority, clearly some productive advances should be actualized in order to improve the ebb and flow water circumstance in numerous pieces of the world and to lessen future dangers of water deficiency. Along these lines farming is one of the real water buyers; much is to be broadened when water use effectiveness is enhanced. A greenhouse is a place for cultivation [1] which is shielded from the external environment. Greenhouses have various points of interest over open-field vegetable creation:

- Protection from inordinate solid precipitation, high all inclusive radiation and wind,
- Collection and putting away of water,
- Rainwater spared by trickle water system,
- Water sparing because of lower radiation and wind levels,
- Yield improvement; clean harvests,
- Erosion is decreased by protecting the dirt from solid downpour,
- Plant security is simpler as pesticides are not washed off by solid downpour,
- Work with the harvest is (for the most part) free from climate impacts.

Moreover in dry and arid regions, other merits are:

- Increased moistness inside the greenhouse reduces water utilization,
- Protection from dust storms,
- Water accumulation and capacity reduces water lack in dry periods,
- Large temperature varieties among day and night are leveled out.

The significant burden of utilizing nurseries in warm, semi-dry districts is the temperature inside that effectively surpasses the outside temperature. This framework is an activity to improve water use proficiency in cultivation just as expanding the developing season by applying nursery cooling. It monitors all the necessary parameters affecting plant growth. Moreover on the practical implementation side it is easy as well as cheap to build and repair. The five most imperative parameters to think about while making a perfect greenhouse are temperature, relative humidity, ground water, light and CO2 focus. So as to plan a fruitful control system, it is critical to understand that the five parameters referenced above are nonlinear and amazingly free. The PC control framework [1] for the greenhouse incorporates the accompanying parts:

Revised Manuscript Received on March 25, 2019.

Vinothkumar. C, Assistant Professor, Dept. of EIE, Sathyabama Institute of Science and Technology, Chennai.
Marshiana. D, Assistant Professor, Dept. of EIE, Sathyabama Institute of Science and Technology, Chennai.
Balasankar Karavadi, Associate Professor, Dept. of Biomedical Engg., Sathyabama Institute of Science and Technology, Chennai.

Retrieval Number: F2382037619/19©BEIESP

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
An Automated Process of Monitoring and Control on Multivariable Non-Linear Greenhouse Environment

- Acquisition of information through sensors
- Processing of information, contrasting it and wanted states lastly choosing what must be done to change the condition of the system.
- Actuation part conveying the important activities.
- This automated system [7] being very simple could be easily modified as it is based on LabVIEW which is quite user friendly. Moreover, it's feasible to implement it as it is a low cost application.

II. SCOPE OF THE INVESTIGATION

The aim of this system is to design a fully automated low cost system greenhouse control with LabVIEW. For better results, the entire five major interrelated environment variables in a greenhouse-Temperature, Humidity, Ground water, Light and CO2 were considered altogether. By means of simulation, the optimal level of environment and growth factors inside the greenhouse can be achieved. The present automated control system uses LabVIEW, which is very modular & user friendly, to automate the climate control system for Greenhouse [3]. At present there are numerous systems available which serve the purpose but the basic demerit of these existing systems is high cost and complexity. Thus the most special feature of this system is that it is very inexpensive and simple as compared to the other existing systems based on electronic controllers and NI DAQ [2] and its maintenance is negligible. In future it can be used for automating the process related applications. This proposed system being very simple could be easily modified as it is based on LabVIEW which is quite user friendly.

III. MATERIALS AND METHODS

The overall block diagram of the automated control of greenhouse environment is shown in figure 1. In case of a real-time Greenhouse there may be slight variations based upon the specific plants being grown in it and the environmental conditions prevailing [4]. Now let us discuss all the physical components in detail.

- Light Sensor:
 A photograph resistor (Light Dependent Resistor) is a resistor whose opposition diminishes with expanding occurrence light power. It can even be noted as a photo-conductor.

 ![Fig 2: LDR and Circuit Symbol of LDR](image)

- Light Sensor Circuit
 At the point when the light dimension is low then the resistance of the LDR is high. This anticipates current which is streaming to the base of the transistors. Accordingly the LED does not light. Be that as it may, when light-weight twinkles on the LDR its Resistance falls and current streams into the essential semiconductor unit base thus the second transistor is an LED light. The preset resistor can be turned up or down to increment or abatement obstruction; in this procedure it can make the circuit pretty much delicate.

 ![Fig 3: LDR Circuit](image)

- Gas Sensor:
 Carbon dioxide concentration assumes an essential job in the development of plants. The normal CO2 concentration in the environment is about 313ppm. This concentration is perfect for the photosynthesis procedure. An issue emerges when a greenhouse is kept shut in harvest time or amid winter season so as to hold the warmth. So as to improve the development of plants inside the greenhouse [6], it is important to expand CO2 fixation alongside favorable temperature and light.

 ![Fig 4: Two possible LDR Circuits](image)
Humidity Sensor:
Humidity is that the quantity of water vapours within the air. In daily language the term “humidity” is generally taken to mean ratio. Humidity may be expressed as absolute humidness and specific humidness. Relative humidity is a very important metric employed in foretelling weather. Humidity indicates the likelihood of precipitation, condensation, or vapor. High humidness makes the individuals feel hotter outside within the summer as a result of it reduces the effectiveness of sweating to chill the body by preventing the evaporation of perspiration from the skin.

Temperature Sensor:
Temperature the board is imperative for achieving high harvest development, yield and quality. Outrageous temperatures may actuate pressure and related harm to the plasmatic structures of the plant. In addition non perfect temperatures additionally meddle with the photosynthetic procedure. Less outrageous problematic temperatures might be postpone plant advancement and influence other plant qualities, for example, dry issue course. By and large, the security given by the greenhouse is adequate to permit the advancement of harvests amid winter without the utilization of warming systems. Be that as it may, a greenhouse with automated warming facilities presents favorable circumstances like expanded generation speed, plausibility of delivering items out of season and better control of ailments.

IV. RESULT ANALYSIS
When the prototype model of this system was tested to check its working, it worked very well and met the design specifications. The so designed prototype system was tested for various parameters based on real time basis. This automated system was tested for all the basic parameters namely light, gas, humidity and temperature [5]. The prototype system [4] was able to act according to the set points fixed by operator. Whenever the real time field signals crossed over the set point the output relays were activated accordingly so as to control the parameter [2]. Moreover the value of the parameters namely, light, gas, humidity and temperature can be recorded by the operator from the custom designed panel. The system is so designed that it generates alarm under any of the following conditions:

1) When light intensity is less than the set point
2) When gas intensity is less than the set point
3) When humidity is more than the set point
4) When temperature is more than the set point

When the light intensity is less than the set point then the LED is switched ‘ON’ on the output side.

This can be modified to lighting system for a real time application. When the gas intensity is less than the set point then the valve is opened. This can be made to allow the flow of gas inside the greenhouse system. When the humidity value increases above the set point then the dehumidifier is switched ‘ON’. In case the temperature value rises above the desired optimum set point the fan is switched ‘ON’.

V. CONCLUSION
Multivariable automated system aims at improving the climatic conditions inside the greenhouse. Moreover it helps in improving the yield also.
An Automated Process of Monitoring and Control on Multivariable Non-Linear Greenhouse Environment

This system has been implemented on a very small scale. As the software being used in this process is LabVIEW, so the whole system is very modular. This automated system modeled using LabVIEW instead of other text based languages as C++ or Visual C, the coding is easy to understand, debug and modify. Even a person with little or no prior knowledge of LabVIEW could control the entire greenhouse climate control system without much hard work. Once this system is implemented on real time basis with very little or no modification, it provides an automated and accessible means for a superior and suitable control over the greenhouse environment in order to amplify effectiveness. This automated system can be used for data-logging of the various parameters which could be very useful in research applications with very little modification in the VI’s. Moreover it’s also possible to transmit the status of greenhouse to a distant PC by means of internet.

REFERENCES