OPEN 8ACCESS

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

Path Analysis in Web Page Application

Sonali Pradhan, Mitrabinda Ray

Abstract: The key to a web application is the information and
a variety of facilities and features present according to the needs
of the user’s requirements. For the superior quality and
maintenance of the website, new methodologies and tools are
developing day by day. In this paper, we propose an algorithm
using the concept of existing A* algorithm to get the shortest path
from the home page to the target page. Before reaching the target
page, the user visits other pages. Our motto here is to reduce the
longest shortest path of a site, which is an indicator of better
structure. For this, we propose a web model. A web model is an
intermediate representation of a given web application, which is
designed based on pages, frames and links of the application. The
A* algorithm is not competent to get the Unreachable pages on
the website. We create our sample HTML web page (a case study)
to observe Unreachable pages (broken links), frame count and,
the order of the frames. The web page is embedded in various
websites such as www.learn-automation.com,
www.seleniumhg.org, and www.html.com. Frame testing is
conducted on the proposed web model using a well-known tool,
Selenium web driver. The Selenium tool shows how the frames are
moving from one frame to other (order of frame execution), frame
count, confirm the broken links or unreachable pages and the
ghost pages in our sample HTML web page. These methodologies
are very useful for the implementation and maintenance of
websites.

Index Terms: frame testing, Selenium web driver, static analysis,
web application, web browser, web model

I. INTRODUCTION

The web application is a client-server interaction of
software application on the web. A client-server environment
is sharing information with multiple computers environment,
like time-sharing computing environment, personal
computing environment, distributed computing environment,
client-server computing environment etc. The need for the
web application is essential in day to day life. Without the
internet, it is tough to fulfil customer demands. A web
application uses a web browser as a client. The client uses
some specific web browser like Google Chrome, Mozilla
Firefox, and Internet Explorer etc. The web application uses
the client-side script such as HTML, JavaScript, etc. and
server-side script such as ASP.NET, PHP, J2EE, Perl/Plack
etc.

Revised Manuscript Received on 30 January 2019.
* Correspondence Author

Sonali Pradhan, Computer Science and Engineering |,
SOA, University, Bhubaneswar, India.
Mitrabinda Ray, Associate

University, Bhubaneswar, India

Professor in SOA,

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

108 & Sciences Publication

Maintenance of websites is becoming a crucial issue on the
web application — some central issues the users find at the
time of accessing the internet as decreasing speed of the
internet, link failure, unreachable pages, page error etc.

For the maintenance of websites, various tools and
techniques are increasingly developing, and more and more
advanced technology with advanced features and appealing
interfaces are coming to the market [1] So for the
advancement of excellence software systems, the production
of reliable and high-quality websites are desired with proper
adopted methodology and techniques. In the early days, the
web application is delivered to the client as a static document,
where the user only gives the request to the server, and it
returns user only viewing the documents. Gradually, the
dynamic document is possible by giving user input through a
web form and getting back the information from the server
with refreshing the required part without refreshing the whole
or entire page [2, 3]. To find out possible faults and
anomalies, HTML pages of the website are examined. Here,
we are centralising on the website for verifying the
Unreachable pages/broken links and Ghost pages.
Unreachable pages mean pages are available but cannot be
reached along any path starting from the initial page. Ghost
pages say the pending links or non-existing pages of the
website. We also conduct frame testing to examine whether
the frames of the web page is correctly working or not. A
frame is a part of a web page or web browser, which displays
its content independently. A page decomposed into frames
can interact with each other. A web page is decomposed into
frames and pages. To reach a target page, different
representation of the structure has to be created. First, we
propose an algorithm using the concept of existing A*
algorithm to get the reachable pages in the website. Then we
create a sample HTML web page to examine the Unreachable
pages. We have different websites embedded in one web page
using HTML iframes. An HTML iframe (Inline Frame) is an
HTML page embedded inside another HTML page on a
website [4]. We check the order of frame moving and total
frame count in a given web page then we checked whether our
application is behaving correctly or not. For this type of
verifications and analysis, the structure of the web model
[5] is essential. A web model is a general concept, addressing
some certain issues in the design and development of web
applications which describes the different paths in the model
to reach the user’s goal on a website. Here, we choose
Selenium web driver tool of version (2.53.1) [6]. We conduct
frame testing to verify how the frames are working in order,
frame count etc. It also finds out the broken links in the
corresponding web page.

Published By:
Blue Eyes Intelligence Engineering

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Path Analysis in Web Page Application

The paper is distributed as follows: Section 2 describes the
background study, Section 3 describes the related work,
Section 4 describes the analysis that is observed in the
structure of the website, Section 5 describes the frame testing
with different web browsers and testing of broken links
through Selenium tool, Section 6 elaborates comparison with
the existing work and finally, the conclusion is drawn in
Section 7 followed by the future work.

I1. BACKGROUND STUDY

In this section, we discuss the state-of-the-art web-based
testing techniques which are widely used in software testing
literature.

A. Web application

Web application [7] is a program, that process at the server
side and the corresponding result is displayed at the client side
or client browser. The browsers supported some
combinations of languages such as HTML, XML, CSS, JSP,
Servlet, JavaScript and DOM programming interface etc. to
process the request in the server side and display the response
of the server in the client browser. There are mainly two types
of web applications such as static web application and
dynamic web application.

Static web application:

According to the client request, the static web pages are
generated through the server, and it’s always displayed in the
client browser. The static web pages are always fixed, and the
context of static pages are the same for all clients on the web.
The static web pages are available to the server through HTTP
request with HTML format. However, every application with
.html extension is not always applicable to static web
application [8]. HTML frames divided the client browser into
some frames and separate HTML document is defined for
each frame. A group of frames is known as a frameset. Iframe
is inline frame with HTML tag <iframe> [4].

Dynamic web application:

It is written in the scripting language. It is compiled on the
server side and displayed on the client side. The dynamic web
application is developed by languages like JSP, PHP, Servlet,
RUBY etc. It is not so easy to develop the dynamic web
application. Developers get some benefits in developing
dynamic web applications such as enhancing the
functionalities of the website; new contents can be added,
easy to update the website and to collaborate different sites
etc. [8, 9]. To collect some data from the site visitors, users
use HTML forms. A form took input from the site user and
processed it at the back-end application. After processing, it
retrieved the data from the database and with the server
response, send back the information to the client browser.
There are various forms available such as radio buttons, text
area, drop down menus, check boxes etc.

B. Testing Techniques

There are some important testing techniques we find to
perform the testing activities according to the requirement.
Model-Based testing of the web application:

A web model is created for a target application using
reverse engineering and web crawler [10, 11, 12]. Software

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

109 & Sciences Publication

reverse engineering is done to retrieve the source code of a
program. The web model is a graph with a root node, the
starting web page, and all other nodes linking to the root node,
are known as link pages. The link connecting from one
page/node to other page/ node is known as an edge. A web
model is a combination of nodes and edges, where each node
represents a page, and each edge represents a link. In the web
application, the links are some HTML links that are generated
from submits, automatic redirections etc. In web page testing,
a test case is composed of a sequence of pages and input
values [10, 11, 12]. By traversing the navigational web model,
the test cases are excerpted.

Code-Coverage Testing of the web application:

In Code-Coverage Testing [13], a control flow model is
generated from the source code. The objective is to generate
test cases to cover all statements as well as branches of the
program based on a control flow model. The generated test
suite determines the level of code coverage of the program.
Some necessary tools used for the Code-Coverage Testing are
Java Eclimma [14], Clover [15] etc. The disadvantages of
Code-coverage testing are- time consuming and expensive,
some lines of codes are also get missing at the time of
Code-Coverage, and depth of knowledge about the
programming language is very much essential in the cases of
Code-Coverage testing [13].

Mutation-Based Testing of the web application:

The objective of previous testing approaches discussed
above is to find the faults in the source code, whereas in the
mutation-based testing, the objective is to measure the
efficiency of the generated test cases. More traditional uses of
mutation are imposing mutants to the source code and making
the test suite exercised to find out the seeded mutants and to
test the efficiency of the test cases [16]. In the context of web
applications, Mutation-Based Testing is used to recover web
model [16].

I11. RELATED WORK

For the website development process, researchers suggest
various analysis to develop the testing of web applications. In
static analysis, the website structure and historical analysis are
focused. History analysis indicates the modification that is not
in the original design or the modifications that produce
undesirable effects. Dynamic analysis tracks on the
information like the DBMS tables, the frequency of
exercising a particular link and the session and cookie data
etc. [17]. In paper [18], objects are focused on their history
and structure analysis. The purpose of focusing these items
are carrying out the maintenance activity. Here several
websites are chosen for analysis. To study the history, the sites
are downloaded every day by ReWeb tool. A summary of
their features like number of links, the line of codes, number
of HTML pages is recorded. Results of the analysis are
provided to the user by exploiting different visualisation
technique. Using structural analysis gives very powerful
navigational facilities.

Published By:
Blue Eyes Intelligence Engineering

Exploring Innovation

OPEN aﬁlCCESS

When the web site immigrates maintenance and needs to
improve its quality, a set of analysis is applied, that is
discussed in [17]. Using with the traditional software system,
some of the proposed analyses are derived. The analysis is
divided into two categories. First one is the analysis of the
structure and the second one is the analysis of the evolution.
A graph represents the web model structure. To traverse the
directed graph, they use flow analysis, traversal algorithms,
and pattern matching. To represent website evolution, the
website can be characterized by using colours, which is a time
indicator. History of individual pages and links can be shown
to the user in a compact and expensive form which degrades
the original structure. The ReWeb tool is used to implement
the above criteria. Using the tool, results provided to the user
are exploiting different visualisation techniques. With great
navigation facilities, structural and system views are
improved while colours are employed with system view. The
demerit is that the tool is not sufficient to capture the HTML
web elements in the dynamic analysis. So, the tool needs
modification to improve the quality as well as for the
improved dynamic analysis of the web pages. After six years
the same paper [17] is followed-up. A method is proposed in
2002 to reverse engineer a web application model. Page
merging heuristics and dynamic analysis were used for
extracting the model. The web model which is proposed in
2002, was very much adopted but features of future web
applications challenge its future applicability.

In paper [19], they have used a formal model for
verification of websites and applications using the model
checker technique. To validate the proposed approach, they
implement a prototype system. The analyser resolves the links
and pages. Then it evaluates the dead links, the structure of
the websites reachable & unreachable pages and somehow
checking the dynamic pages too. In the paper [20] they give
an exciting proposal for structural analysis. They propose
white box testing for static web applications. There a
navigational model focuses on HTML pages and navigational
links of the web applications. The paper [21] describes the
difference between web-based application and traditional
testing, where they discuss a various type of structural
analysis for web applications. In that paper, they have
discussed various aspects of testing web application, such as
test models, testing tool, and the scope of testing as well as
testing strategies.

Our study complements and extends existing research on the
following:
e Shortest path using a suggested
implemented to our proposed model
o Frame testing with different web browsers

e Quality of the web page

algorithm,

IV. PROPOSED WEB MODEL FOR STRUCTURAL ANALYSIS

A conceptual model is proposed to represent the structure
analysis of the website. A website is identified, all information
is retrieved from a given web server. Documents accessed
through different servers, the website is organised as the
structure into pages and linked between pages. To reach a
document, it is impossible without navigating other pages in

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

110

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

the website, which is called dominators of the page of interest
and provides a site as *.html, to the server. The structure of
the web model with frames is represented through a directed
graph. The directed graph G is expressed as G = (N, E), where
n € N represents a single HTML page, and N represents a set
of pages or nodes. E represents a set of edges or links between
Ny, Np, where e = (ny, n,) € E, which connects two nodes ny, n,
if there is an HTML link from the page n, to page n, Here, we
consider pages containing frames. The primary website model
can be represented as N = N; U N, U F,where fye F f,e F
...and F is the set of all frames. Edges can be split into two
subsets as E = E; U E,. Here, E; isa subset of N; = (N; U N,),
and an edge e = (ny, n,) £ E; imitates the presence of a normal
link from page n; to n, if n; € N; and n, € N;, Decomposition
of page n; into the frames in n, occurred, when n; € N;and n,
£ N,. E, is the set of edges that loading the Initial page into a

=

[2 | [=

[=

Fig 1. Example of a website model including page
decomposition into frames and reaching the required
documents with the shortest path

.

Fig 1 illustrates an example of a proposed web model. The

link between P, and Ps, Psand Pg, and between link P;and Pg
are normal navigation of HTML pages as (E;). E; has set of
links between pages as {P,- Ps, Ps- Pg, P3- P, P4- P7}. The
link between P, and {f1, f2, f3}, indicates that page P;
decomposes to f1, f2, f3 where the pages P,, P; P, are initially
loaded to the frames f;, f, f;respectively (E;). E; has set as
{P:- (f3, f5, f3), (f1- Py, f5- Py, f3- P,)}. In the web model, N;
has set of nodes {Ps, P, P7} with simple HTML pages without
frames, and N, have a set of nodes {P,, P,, P3, P,} pages with
frames. Page Pg is considered to be the target page in this
example. In the flow analysis of the web structure, Py is the
initial node or home page. Subsequently, nodes covered as P,
Ps, P4, Ps, Pg, and P7. Observing Fig 1 of our web model, we
have three dominators, to reach Pg (target page).
The dominators in the dominator analysis are the root node
P, the frames {f,, f,, f3} and other nodes (P,, Ps, Ps) covering
Ps. The shortest path from P, to P3 has weight 0, having the
sequence P, {fl f, f3}, {f, Ps}. As pages P, P; P, are
automatically loaded into the frames {f, f, f3}, weight count is
0. The link selection or weight is 1 for P; to Pg, since the
requirement for navigation is
from P3to Py (target page).

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Path Analysis in Web Page Application

Searching for a given document is very difficult when the path
is long. So, the developer always tries to provide a
well-designed website to reach the documents with the
shortest path.

A. Reaching frames and frames to pages

The computation of reaching frames and reaching frames to
pages is essential to determine the set of frames in which the
page appears. The set of frames are treated as an initial page.
In our web model in Figure 1, the set of three frames are in the

initial page A, Computation of reaching frames and the
frames to pages on a website is discussed in the frame analysis
framework [22]. The propagation of flow information is the
basic idea behind the flow analysis.
The flow equations required for the computation of reaching
frames will be:

FLOW, = {n}IFneF

FLGIWﬂ:[ﬁ F3rma) E,
FLOW, g seherwize
FLOWEKILL, _rirner

=FIFMNEF

FLG]'VKII'L?! = @ otherwize

u
FLOWIN, = € pred (n) FLOWOUT,

FLOWOUT, = FLOW, U {FLOWIN,\FLOWKILL,}

A frame, (n €F), represents n is a node generates flow

information,':Fm"VmMﬂ=F) says, it overrides any previous
frame. The flow information representing f is generated, but
flow information is not killed. That shown in the notation

(FLEJWKI.LL,! =£). The notation (pred (n)), the set FLOWIN,
of each node n collects information about all closing frames

with FLOWOUT ggi5 of predecessors of n (pred (n)). Here,
FLOWOUT getjs acquired by subtracting the FLOWKILL ot

and adding with the FLOW get The site server provides the
root of the graph associated with the first page. The graph has

an empty FLOWIN set until a fixed point is reached, the
flow of information is repeatedly propagated to the graph.
According to Figure 1, flow propagation is occurred along the

edges Ei E; and B3 504 from each node n :]Lfl- £, f“} . The

resulting analysis is found in the FLOWOUT gt of each
node, and that is the collection of all frames into the page
associated to the node.

FLOW= {g}

/

FLOW= {f1} i

FLOWKILL=F ﬂ
FLOWKILL=F Lf/z__l
FLOWIN= {f1} .

S FLOWIN= {f2}
FLOWOUT=F m el - FLOWOUT=F
FLOWIN= {12}

FLOWOUT=F
El FLOW= {f3}

- P7 | FLOWOUT=F
]

FLOWIN= {}
FLOWOUT= {g}

FLOW= {f3}

El FLOWKILL=F

\ FLOWIN= {f3}

FLOW= {f1}
FLOWOUT=F

Fig 2. Frame computation for reaching frames to pages

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

111 & Sciences Publication

The result of the reaching frames and frames to pages is
shown in Fig 2. The fixed point is reached to get the proper
node after the propagation flow information. This

propagation flow information is determined using FLOWIN

and FLOWOUT sets given in Figure 2. In that Figure 2, 1 is
the top level node. All other pages are displayed in

Ui o £ frames. If an edge added from Fi tof& then
FLOWIN = FLOWOUT ={g. £} From this, it is clear

that f& is loaded at /2 or at the top level. By this reaching
frame and frames to page analysis, the presence of unwanted
pages and frames can be traced out.

Fig 2 shows the frame computation of Figure 1. The initial

page of this site P hasalabel g inits FLOW set to denote the
top frame. Frames A f f generate themselves as flow
information, overriding any incoming data. The FLOWIN

and FLOWOUT cets are determined, after propagating the
flow information until the fixed-point is reached.

B. Shortest path

A website may require traversing several pages to reach a
document. Useful information about a website is the
minimum number of pages that must be visited before
reaching a target document. In a graph, the root node taken as
m, the shortest path from m to any other node n is the path
from m to n with the minimum total weight associated with the
edges if there is real user selection, which is a “mouse clicks”,
then the edge is weighted as 1. Otherwise, weight is 0, as it is
loaded automatically. We suggest an algorithm named
Shortest_path_A*, to find the shortest path from the root node
to any target node in a web model, using the concept of A*
algorithm. A* algorithm is known as a heuristic featured
algorithm or informed search algorithm, which calculates f(n)
=g(n) + h(n), where f (n) is the heuristic function, g(n) is the
distance/cost of a node n from the initial node, and h(n) is the
distance/cost of a node n from goal node. For the
implementation of the algorithm, we use two lists as OL.ist
(open list) and CList (closed list). The proposed
Shortest_path_ A* algorithm is used to satisfy the covering
nodes in the web model is as follows:

Shorest_path_ A* ALGORITHM

/NNPUT1: weighted web model //weights are assigned to the
links, for the “mouse clicks”, the edges are weighted as 1
otherwise weights 0, when it loads automatically.

/IINPUT2: targeted page

Step 1: Place the initial node or start node on to an OList. //P1
placed in OList

Step 2: Remove from OL.ist and process it and place onto the
CList. // P1 placed in CList

Step 3: If it is a goal node, return success and stop the process.
/I Not a goal node

Otherwise

Step 4: Place the children node if any on to the OList. // {P2,
P3, P4} placed in OList

Step 5: Calculate heuristic value [f (n)] of each node in the
OList.

Published By:
Blue Eyes Intelligence Engineering

Exploring Innovation

OPEN aACCESS

Step 6: The node having minimum heuristic value will be
removed from OL.ist and placed into the CList. // P3is placed
to CList as f (n) value of P3 is 1, and that is the minimum
heuristic value

Step 7: The process will be continued until the goal node is
reached.

Step 8: End the process.

C. Explanation of the algorithm

P1 is the initial node, and P6 is our goal node in the web
model. Initially, the two lists OList and CList are empty.
OList is used to place the Initial node and the associated
children nodes. CList is used to place the heuristic value of the
initial node taken and the corresponding minimum heuristic
values among the children nodes in the web model. Here, f (n)
values of all existing nodes are calculated in the web model.
The initial node P1 is placed in the OList. Then f (n) value of
P1 is calculated. We get the f (n) value of P1 will be 3
calculating f (n) = (0+3) = 3. If P1 is a goal node, then it
returns success. Otherwise, it will Place the children nodes
P2, P3, P4 in the OList. Calculating f (n) value of P2, P3, P4,
we get f (n) value of P2, P3, P4 will be 2, 1, and 5
respectively. The node P3 has minimum heuristic value
among all other nodes P2, P4. So P3 will be placed in CList.
Now, we get P3 is not a goal node. Then the children nodes
P2, P4, P6 are placed in the OList. Again calculating f (n)
value of P2, P4, P6, we get 2, 5, and 1 respectively. The node
P6 has minimum heuristic value will be placed in the CList,
which is a goal node. We get the f (n) value of P5 and P7 will
be 2, and 7, which are bigger than the f (n) value of P6. So P6
is our goal node, placed in CList. So, after getting the goal
node, the process is stopped.

Static Verification

To detect possible faults and anomalies, static analysis can
be done by scanning the HTML pages on the website. Static
checks can be done with navigation paths provided to the user
as well as data flows of the information gathered by the user.
More discussion on static analysis is given in the paper [18].
In the static analysis the presence of unreachable pages, ghost
pages can be detected. For the unreachable pages, pages are
found in the server side, but it cannot reach to the client side
given to the user starting from the initial page to any path
covered in the same way ghost page associated with pending
links, which are linking to non-existing pages. For the static
verification testing, All-path has an essential factor to detect
faults in the web. In our paper, we apply the same method to
find unreachable pages or failure links as well as for frame
testing in the subsection (Testing with selenium web driver).
We have embedded three frames and checks for static analysis
using some criteria as:

I. Page testing- In some test cases every page is visited at
least once.

I1. Hyperlink testing- In some test cases every hyperlink

from every page in the website traversed at least
once.

I11. All-paths testing- Every given path should be traversed
at least once.

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

112 & Sciences Publication

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

D. Testing with Selenium web driver

The utilisation of A* algorithm is very much helpful for
reachable pages without covering unnecessary/pointless
pages. However, to find out Unreachable pages or broken
links, A* algorithm is not competent. So to get the
Unreachable pages, we utilise different methodologies by
implementing an HTML sample page. In this section, we have
taken three nested frames. An HTML code is composed for
the nested frames (f1, f2, f3) for our web model shown in Fig
1. In the nested frame, we find f1 frame has website
http://www.learn-automation.com, f2 frame has website
http://www.seleniumhg.org, and the f3 frame has web site
http://www.html.com. We conduct testing of nested frames,
and we test to get the Unreachable pages and ghost pages. The
Selenium tool shows how the frames are moving from one
frame to other (order of frame execution), frame count, and
confirm the broken links or Unreachable pages.
HTML CODE:
<! DOCTYPE html>
<HtmI>
<Body>
<iframe src="http://www.learn-automation.com"
width="400" height="400" name="selenium">
<p>your browser does not support iframe. </p>
</iframe>
<iframe src="http://www.seleniumhq.org” width="400"
height="400" title="selenium_news">
<p>your browser does not support iframe. </p>
</iframe>
<iframe src="http://www.html.com" width="400"
height="400" id="htmI">
<p>your browser does not support iframe. </p>
</iframe>

Click here for selenium tutorial
</body>

</html>
e 1 ety ot T T i

1 N Ta Sech <N)

X x4

"8 a0 - =

| standard tickets for SeleniumCoaf Beriin are on s:‘e ~

L TML.COM

ﬁ

Learn to Code HTML& CSS

What s Selenium?

Which part of Selenium is appropriate for .

Fig 3. Embedded frames

Fig 3 shows an embedded frame using the above HTML
code. In this figure, three websites are embedded into one web

page.

Published By:
Blue Eyes Intelligence Engineering

Exploring Innovation

Path Analysis in Web Page Application

The websites we have taken are www.learn-automation.com,
www.seleniumhg.org, www.html.com. With the help of
Selenium web driver, we found the frame count as well as the
order of the frames in the web page.

£ PacageEglons

* public void

£ Problems @ Javadoc (5, Dechmtion B Conscle 17 [Coverage So Callierrchy I Resubs of ning class FramesDemaTest ©
X% GHES #E

180 32 i jvew e 4 17, 2017, B8 PM

Fig 4. Frame testing with Firefox web browser

Fig 4 shows the frame testing which is done using the
Firefox web browser (47.0.1) and makes our test frames
passed. As shown in Fig 3, the frame count is 3 in the given
web model (Fig 1). Using findElement () method, we count
the total size of frames in the web model. Total size is 3
(shown in Fig 4) for the given web model. This type of testing
is beneficial when some frames are embedded in one website.
To switch from one frame to the other, firstly we have to come
to the parent frame from any other frame. Here, we have taken
our parent frame at www.learn-automation.com. This is the
proper way to identify the frames when internally the number
of frames are more and not possible to count the frames
visually. With the iframe testing, the tester can switch to the
first frame, do some operation and moves to the second frame,
third frame etc. The console window shows that the testing
makes our test frames passed, and it is working as expected.

N RO QG u

FrameDemeT

ioport erg.opnqn, selentun.ty

blie clovs FramesdesaTest {

3 rotems @ Jude [Deunion (3 Comole b Covege 3+ ol Werwehy AT Pt of g

Fig 5. Result for frame testing using TestNG in Firefox
web browser

L4

Eclipse, IDE, and Maven etc. TestNG provides so many
additional functionalities, using them tester can create a very
robust framework itself. Reports are auto-generated by TestNG
and for the Selenium web driver, TestNG is the default

NGB0 ATE G e, s woo omm framework. Fig 5 shows the result for the running class we have

used and the complete report of the testing. The report in the Fig
5 shows the testing of the frames as pass.

N0 Ees .

=40

5 Paciage Bpioer

oy

sents By. toghome

o Problems @ Jaaadoc [Decantion £ Conscle 37 ' Coveage: * CallHiearchy: i Resudts of nnning dass FramesDemoTest) Emorlog

[TesthS] C: Progrom Fles el 0 90k e e [l 17, 217, 0336 5M)
is3

Fig 6. Frame testing in Google Chrome web browser
Again the same frame testing is done with Google Chrome
(59.0.3), which is shown in Fig 6. Firefox web browser is very
compatible to Selenium web driver, but the processing speed
is much faster in Google Chrome rather than Firefox web
browser.

B mblic cas

pblic static wid ain(Strisg]] ags) {

pblic void testFrames() theoss

Seerce

£ ATt £ Fled Tess Sumemary

FalseEcgn

Fig 7. Result for frame testing using TestNG in the Google
Chrome web browser
Fig 7 shows the result of the class we have used for the
Google Chrome web browser, showing in green.
In this section of TestNG, it shows the summary of our

In the Selenium framework environment, it has two testing method.
windows as a console window and TestNG window. The

console window makes the testing pass or fail, and the TestN

window gives the summary of the testing used. In the same
Selenium environment, TestNG is a testing framework inspired
by JUnit and it supports a variety of tools and plug-ins such as

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

G

Published By:
Blue Eyes Intelligence Engineering
113 & Sciences Publication Exploring Innovation

OPEN aﬁlCCESS

NIV QT G INAST

Fig 8. Shows the testing of unreachable pages of the website
named as www.seleniumhg.org in the Firefox web browser. We
verify all the links of the website and the result shows that there
is no broken links and links are working correctly with giving
“Ok” messages. If it is a “page not found” message according to
the response code, which means a page is unreachable or page
error occurred. With broken links testing, we can also be able to
find broken images and the overall status of the website. It can
also check for the Ghost pages in the website giving the
messages as “page error”, “connection timeout” etc. The model
of the site created can analyse the existence of the Unreachable
pages. Testing is done with checking all links of the page, and
also it checked all anchor links. It verifies how many links are
there with the returning list of web elements. Here, in
seleniumhg.org website, we found total 66 links and all are
working as expected without any error message. Similarly,
other websites are taken in our application can be checked for
broken links or unreachable pages.

E. Evaluation output report
Table 1. Frames with the associated websites

Frame 1 Frame 2 Frame 3
www.learna| www.seleniumhq.org www.html.com
utomation.c

om

Total link{ Total links 86 Total links 89
83 No broken links found | No broken

No broken links found
links found

Table 2. Frame count and passed test frames

Frame | The result o] Frame coun| Result of

count | frame testing in| in Googl§ frame testing in

in Firefox Chrome Google

Firefox| web browser | web browser | Chrome

web web browser

browsel

3 Passed tes| 3 Passed test framg
frame

Here Tablel and Table 2 present an assessment report of the
frame testing. Table 1 demonstrates the yield report of the
aggregate links and broken links of the sites, where Table 2
demonstrates the yield report of the frame count and test
frames passed/ failed.

Retrieval Number: E1951017519/19©BEIESP
Journal Website: www.ijrte.org

114

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

V. COMPARISON WITH EXISTING WORK

In paper [18], they claim that the longest shortest path of a site
may be an indicator of better structure. In their approach before
reaching the page enMapITC. htm, four other pages must be
visited. They conclude that the longest shortest path of a site can
be an indicator of good structure. However, the demerit they
find that a high value of this measure can be associated with the
possible structural problem. Our approach holds that
unnecessarily visit other pages in not always ideal. We go for
reaching the target page earlier with consuming less time.
Before reaching the target page, the user visits minimum no of
pages. They have used Dijkstra’s Algorithm which finds the
single source shortest path to all reachable destinations in a
graph. It doesn’t allow negative edges. We have used A* Search
Algorithm, on the other hand, uses a heuristic function to guide
the search. That is: f(n)=g(n)+h(n)f(n)=g(n)+h(n), where g(n) is
the distance from source to node n and h(n) is a heuristic to
estimate the distance from node n to destination node. The g (n)
& h (n) are two forces in opposite directions. If search goes way
too deep in a path where the heuristic function doesn’t have
much to promise, then g (n) pulls it back to relax more
promising paths. The key difference between Dijkstra and A*
search algorithm is that A* algorithm focuses on reaching the
goal node from the current node, not to reach every other node.
In paper [18], they have focused on the structure and history
analysis. However, in our view, the Centre of attention is the
maintenance issues of the website as well as the implementation
of HTML code to confirm reachable and unreachable pages.

VI. CONCLUSION

In this paper, we proposed a web model. We suggested an
existing algorithm for shortest path calculation that uses the
concept of A* algorithm and our proposed work is also
evaluated with Selenium web driver tool to find out broken links
or unreachable pages and ghost pages in the website. In this
process of activities, we concluded that automatic support for
verification and validation activities could be very beneficial.
We found that all paths in the website are thoroughly examined
before delivering the web pages. In this testing, we observed a
high level of automation in generating the test cases using
Selenium web driver. It is essential to find out the shortest path
to reach the target page for the user when the path is long for the
websites having set of web pages. In that condition, our
algorithm satisfactorily accomplished in finding the shortest
path to reach the targeted document. Our experimental
applications for Selenium testing guaranteed the quality of
websites having set of web pages. Future work suggests that
testing of dynamically created pages with extending the
conceptual model is required to analyse and display websites for
that dynamic testing also advisable for thorough testing of
websites.

REFERENCES

1. Montgomery, D. C. Design and analysis of experiments. John Wiley &
Sons, 2017.

Marchetto, A., Tonella, P., & Ricca, F. Testing techniques applied to
Ajax web applications. In Proceedings of the Workshop on Web

Quality, Verification and Validation, WQVV’07, 2007.

2.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Path Analysis in Web Page Application

3. Costa, M., Gomes, D., & Silva, M. J. The evolution of web archiving. Mitrabinda Ray has completed her PhD. degree
International Journal on Digital Libraries, 18(3), 2017, pp. 191-205. . from NIT, Rourkela. Now she is working as an

4. Felke-Morris, T. Basics of web design: HTML5 & CSS3. Pearson, associate professor in SOA, University,
2014. Bhubaneswar, in the department of Computer

5. Conallen, J. Building Web applications with UML. Addison-Wesley -~ Science and Engineering. Her area of interest is
Longman Publishing Co., Inc, 2002. software testing, software reliability & estimation.

6. Gojare, S., Joshi, R., & Gaigaware, D. Analysis and Design of Selenium She has published a number of papers in different
WebDriver Automation Testing Framework. Procedia Computer journals and conferences.

Science, 50, 2015, pp. 341-346.

7. Panthi, V., & Mohapatra, D. P. An approach for dynamic web
application testing using MBT. International Journal of System
Assurance Engineering and Management, 8(2), 2017, pp. 1704-1716.

8. Hall, M., Brown, L., & Chaikin, Y. Core Servlets and JavaServer Pages:
Advanced Technologies. Pearson Education, 2, 2007.

9. Brown, D., Pandya, A., Mulgrew, Z., Smith, J., Miller, A., & Kusuma,
A. Dynamic loading of routes in a single-page application. U.S. Patent
No. 9,967,309. Washington, DC: U.S. Patent and Trademark Office,
2018.

10. Andrews, A. A, Offutt, J., & Alexander, R. T. Testing web applications
by modelling with FSMs. Software and Systems Modeling, 4(3), 2005,
pp. 326-345.

11. Bellettini, C., Marchetto, A., & Trentini, A. TestUml: user-metrics
driven web applications testing. In Proceedings of the 2005 ACM
symposium on applied computing, 2005, pp. 1694-1698.

12. Ricca, F., & Tonella, P. Building a tool for the analysis and testing of
web applications: Problems and solutions. Tools and Algorithms for the
Construction and Analysis of Systems, 2001, pp. 373-388.

13. Tonella, P., & Ricca, F. A 2-layer model for the white-box testing of web
applications. In Web Site Evolution, Sixth IEEE International Workshop
on (WSE'04), 2004, pp. 11-19.

14. Hoffmann, M. R., Brock, J., & Mandrikov, E. Eclemma-java code
coverage for eclipse, 2009.

15. Kessis, M., Ledru, Y., & Vandome, G. Experiences in coverage testing
of a Java middleware. In Proceedings of the 5th international workshop
on Software engineering and middleware, ACM, 2005, pp. 39-45.

16. Bellettini, C., Marchetto, A., & Trentini, A. Dynamical extraction of
web applications models via mutation analysis.
INFORMATION-YAMAGUCHI-, 8(5), 673, 2005.

17. Tonella, P., & Ricca, F. Dynamic model extraction and statistical
analysis of web applications. In Web Site Evolution, 2002. Proceedings.
Fourth International Workshop on IEEE, 2002, pp. 43-52.

18. Ricca, F., & Tonella, P. Web Site Analysis: Structure and Evolution. In
icsm, 76, 2000.

19. Di Sciascio, E., Donini, F. M., Mongiello, M., & Piscitelli, G. An Web: a
system for automatic support to web application verification. In
Proceedings of the 14th international conference on Software
engineering and knowledge engineering, ACM, 2002, pp. 609-616.

20. Ricca, F., & Tonella, P. Understanding and restructuring Web sites with
ReWeb. IEEE MultiMedia, 8(2), 2001, pp. 40-51.

21. DiLucca, G. A, & Fasolino, A. R. Testing Web-based applications: The
state of the art and future trends. Information and Software Technology,
48(12), 2006, pp. 1172-1186.

22. Aho, A. V., Sethi, R., & Ullman, J. D. Compilers, Principles,
Techniques. Addison Wesley, 7(8), 9, 1986.

AUTHORS PROFILE

Sonali Pradhan, has completed her B.Tech
and M.Tech in Computer Science and
Engineering from BPUT, Odisha. Now she is
continuing her research (PhD.) in SOA,
University, Bhubaneswar. She has attended
many conferences like IEEE, Springer,
Elsevier etc. Her area of interest is
Software testing.

Retrieval Number: E1951017519/19©BEIESP Published By:
Journal Website: www.ijrte.org Blue Eyes Intelligence Engineering

115 & Sciences Publication Exploring Innovation

