
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

108

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org



Abstract: The key to a web application is the information and

a variety of facilities and features present according to the needs

of the user’s requirements. For the superior quality and

maintenance of the website, new methodologies and tools are

developing day by day. In this paper, we propose an algorithm

using the concept of existing A* algorithm to get the shortest path

from the home page to the target page. Before reaching the target

page, the user visits other pages. Our motto here is to reduce the

longest shortest path of a site, which is an indicator of better

structure. For this, we propose a web model. A web model is an

intermediate representation of a given web application, which is

designed based on pages, frames and links of the application. The

A* algorithm is not competent to get the Unreachable pages on

the website. We create our sample HTML web page (a case study)

to observe Unreachable pages (broken links), frame count and,

the order of the frames. The web page is embedded in various

websites such as www.learn-automation.com,

www.seleniumhq.org, and www.html.com. Frame testing is

conducted on the proposed web model using a well-known tool,

Selenium web driver. The Selenium tool shows how the frames are

moving from one frame to other (order of frame execution), frame

count, confirm the broken links or unreachable pages and the

ghost pages in our sample HTML web page. These methodologies

are very useful for the implementation and maintenance of

websites.

Index Terms: frame testing, Selenium web driver, static analysis,

web application, web browser, web model

I. INTRODUCTION

The web application is a client-server interaction of

software application on the web. A client-server environment

is sharing information with multiple computers environment,

like time-sharing computing environment, personal

computing environment, distributed computing environment,

client-server computing environment etc. The need for the

web application is essential in day to day life. Without the

internet, it is tough to fulfil customer demands. A web

application uses a web browser as a client. The client uses

some specific web browser like Google Chrome, Mozilla

Firefox, and Internet Explorer etc. The web application uses

the client-side script such as HTML, JavaScript, etc. and

server-side script such as ASP.NET, PHP, J2EE, Perl/Plack

etc.

Revised Manuscript Received on 30 January 2019.
* Correspondence Author

Sonali Pradhan, Computer Science and Engineering ,

SOA, University, Bhubaneswar, India.

Mitrabinda Ray, Associate Professor in SOA,

University, Bhubaneswar, India

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Maintenance of websites is becoming a crucial issue on the

web application — some central issues the users find at the

time of accessing the internet as decreasing speed of the

internet, link failure, unreachable pages, page error etc.

For the maintenance of websites, various tools and

techniques are increasingly developing, and more and more

advanced technology with advanced features and appealing

interfaces are coming to the market [1] So for the

advancement of excellence software systems, the production

of reliable and high-quality websites are desired with proper

adopted methodology and techniques. In the early days, the

web application is delivered to the client as a static document,

where the user only gives the request to the server, and it

returns user only viewing the documents. Gradually, the

dynamic document is possible by giving user input through a

web form and getting back the information from the server

with refreshing the required part without refreshing the whole

or entire page [2, 3]. To find out possible faults and

anomalies, HTML pages of the website are examined. Here,

we are centralising on the website for verifying the

Unreachable pages/broken links and Ghost pages.

Unreachable pages mean pages are available but cannot be

reached along any path starting from the initial page. Ghost

pages say the pending links or non-existing pages of the

website. We also conduct frame testing to examine whether

the frames of the web page is correctly working or not. A

frame is a part of a web page or web browser, which displays

its content independently. A page decomposed into frames

can interact with each other. A web page is decomposed into

frames and pages. To reach a target page, different

representation of the structure has to be created. First, we

propose an algorithm using the concept of existing A*

algorithm to get the reachable pages in the website. Then we

create a sample HTML web page to examine the Unreachable

pages. We have different websites embedded in one web page

using HTML iframes. An HTML iframe (Inline Frame) is an

HTML page embedded inside another HTML page on a

website [4]. We check the order of frame moving and total

frame count in a given web page then we checked whether our

application is behaving correctly or not. For this type of

verifications and analysis, the structure of the web model

[5] is essential. A web model is a general concept, addressing

some certain issues in the design and development of web

applications which describes the different paths in the model

to reach the user’s goal on a website. Here, we choose

Selenium web driver tool of version (2.53.1) [6]. We conduct

frame testing to verify how the frames are working in order,

frame count etc. It also finds out the broken links in the

corresponding web page.

Path Analysis in Web Page Application
Sonali Pradhan, Mitrabinda Ray

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Path Analysis in Web Page Application

109

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

The paper is distributed as follows: Section 2 describes the

background study, Section 3 describes the related work,

Section 4 describes the analysis that is observed in the

structure of the website, Section 5 describes the frame testing

with different web browsers and testing of broken links

through Selenium tool, Section 6 elaborates comparison with

the existing work and finally, the conclusion is drawn in

Section 7 followed by the future work.

II. BACKGROUND STUDY

 In this section, we discuss the state-of-the-art web-based

testing techniques which are widely used in software testing

literature.

A. Web application

 Web application [7] is a program, that process at the server

side and the corresponding result is displayed at the client side

or client browser. The browsers supported some

combinations of languages such as HTML, XML, CSS, JSP,

Servlet, JavaScript and DOM programming interface etc. to

process the request in the server side and display the response

of the server in the client browser. There are mainly two types

of web applications such as static web application and

dynamic web application.

Static web application:

 According to the client request, the static web pages are

generated through the server, and it’s always displayed in the

client browser. The static web pages are always fixed, and the

context of static pages are the same for all clients on the web.

The static web pages are available to the server through HTTP

request with HTML format. However, every application with

.html extension is not always applicable to static web

application [8]. HTML frames divided the client browser into

some frames and separate HTML document is defined for

each frame. A group of frames is known as a frameset. Iframe

is inline frame with HTML tag <iframe> [4].

Dynamic web application:

 It is written in the scripting language. It is compiled on the

server side and displayed on the client side. The dynamic web

application is developed by languages like JSP, PHP, Servlet,

RUBY etc. It is not so easy to develop the dynamic web

application. Developers get some benefits in developing

dynamic web applications such as enhancing the

functionalities of the website; new contents can be added,

easy to update the website and to collaborate different sites

etc. [8, 9]. To collect some data from the site visitors, users

use HTML forms. A form took input from the site user and

processed it at the back-end application. After processing, it

retrieved the data from the database and with the server

response, send back the information to the client browser.

There are various forms available such as radio buttons, text

area, drop down menus, check boxes etc.

B. Testing Techniques

 There are some important testing techniques we find to

perform the testing activities according to the requirement.

Model-Based testing of the web application:

 A web model is created for a target application using

reverse engineering and web crawler [10, 11, 12]. Software

reverse engineering is done to retrieve the source code of a

program. The web model is a graph with a root node, the

starting web page, and all other nodes linking to the root node,

are known as link pages. The link connecting from one

page/node to other page/ node is known as an edge. A web

model is a combination of nodes and edges, where each node

represents a page, and each edge represents a link. In the web

application, the links are some HTML links that are generated

from submits, automatic redirections etc. In web page testing,

a test case is composed of a sequence of pages and input

values [10, 11, 12]. By traversing the navigational web model,

the test cases are excerpted.

Code-Coverage Testing of the web application:

 In Code-Coverage Testing [13], a control flow model is

generated from the source code. The objective is to generate

test cases to cover all statements as well as branches of the

program based on a control flow model. The generated test

suite determines the level of code coverage of the program.

Some necessary tools used for the Code-Coverage Testing are

Java Eclimma [14], Clover [15] etc. The disadvantages of

Code-coverage testing are- time consuming and expensive,

some lines of codes are also get missing at the time of

Code-Coverage, and depth of knowledge about the

programming language is very much essential in the cases of

Code-Coverage testing [13].

Mutation-Based Testing of the web application:

 The objective of previous testing approaches discussed

above is to find the faults in the source code, whereas in the

mutation-based testing, the objective is to measure the

efficiency of the generated test cases. More traditional uses of

mutation are imposing mutants to the source code and making

the test suite exercised to find out the seeded mutants and to

test the efficiency of the test cases [16]. In the context of web

applications, Mutation-Based Testing is used to recover web

model [16].

III. RELATED WORK

For the website development process, researchers suggest

various analysis to develop the testing of web applications. In

static analysis, the website structure and historical analysis are

focused. History analysis indicates the modification that is not

in the original design or the modifications that produce

undesirable effects. Dynamic analysis tracks on the

information like the DBMS tables, the frequency of

exercising a particular link and the session and cookie data

etc. [17]. In paper [18], objects are focused on their history

and structure analysis. The purpose of focusing these items

are carrying out the maintenance activity. Here several

websites are chosen for analysis. To study the history, the sites

are downloaded every day by ReWeb tool. A summary of

their features like number of links, the line of codes, number

of HTML pages is recorded. Results of the analysis are

provided to the user by exploiting different visualisation

technique. Using structural analysis gives very powerful

navigational facilities.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

110

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

 When the web site immigrates maintenance and needs to

improve its quality, a set of analysis is applied, that is

discussed in [17]. Using with the traditional software system,

some of the proposed analyses are derived. The analysis is

divided into two categories. First one is the analysis of the

structure and the second one is the analysis of the evolution.

A graph represents the web model structure. To traverse the

directed graph, they use flow analysis, traversal algorithms,

and pattern matching. To represent website evolution, the

website can be characterized by using colours, which is a time

indicator. History of individual pages and links can be shown

to the user in a compact and expensive form which degrades

the original structure. The ReWeb tool is used to implement

the above criteria. Using the tool, results provided to the user

are exploiting different visualisation techniques. With great

navigation facilities, structural and system views are

improved while colours are employed with system view. The

demerit is that the tool is not sufficient to capture the HTML

web elements in the dynamic analysis. So, the tool needs

modification to improve the quality as well as for the

improved dynamic analysis of the web pages. After six years

the same paper [17] is followed-up. A method is proposed in

2002 to reverse engineer a web application model. Page

merging heuristics and dynamic analysis were used for

extracting the model. The web model which is proposed in

2002, was very much adopted but features of future web

applications challenge its future applicability.

 In paper [19], they have used a formal model for

verification of websites and applications using the model

checker technique. To validate the proposed approach, they

implement a prototype system. The analyser resolves the links

and pages. Then it evaluates the dead links, the structure of

the websites reachable & unreachable pages and somehow

checking the dynamic pages too. In the paper [20] they give

an exciting proposal for structural analysis. They propose

white box testing for static web applications. There a

navigational model focuses on HTML pages and navigational

links of the web applications. The paper [21] describes the

difference between web-based application and traditional

testing, where they discuss a various type of structural

analysis for web applications. In that paper, they have

discussed various aspects of testing web application, such as

test models, testing tool, and the scope of testing as well as

testing strategies.

 Our study complements and extends existing research on the

following:

 Shortest path using a suggested algorithm,

implemented to our proposed model

 Frame testing with different web browsers

 Quality of the web page

IV. PROPOSED WEB MODEL FOR STRUCTURAL ANALYSIS

 A conceptual model is proposed to represent the structure

analysis of the website. A website is identified, all information

is retrieved from a given web server. Documents accessed

through different servers, the website is organised as the

structure into pages and linked between pages. To reach a

document, it is impossible without navigating other pages in

the website, which is called dominators of the page of interest

and provides a site as *.html, to the server. The structure of

the web model with frames is represented through a directed

graph. The directed graph G is expressed as G = (N, E), where

n N represents a single HTML page, and N represents a set

of pages or nodes. E represents a set of edges or links between

n1, n2, where e = (n1, n2) E, which connects two nodes n1, n2

if there is an HTML link from the page n1 to page n2. Here, we

consider pages containing frames. The primary website model

can be represented as N = N1 N2 where f1 , f2

…and is the set of all frames. Edges can be split into two

subsets as E = E1 E2. Here, E1 is a subset of N1 (N1 N2),

and an edge e = (n1, n2) E1 imitates the presence of a normal

link from page n1 to n2 if n1 N1 and n2 N1. Decomposition

of page n1 into the frames in n2 occurred, when n1 N1 and n2

 N2. E2 is the set of edges that loading the Initial page into a

frame.

Fig 1. Example of a website model including page

decomposition into frames and reaching the required

documents with the shortest path

 Fig 1 illustrates an example of a proposed web model. The

link between P2 and P5, P5 and P6, and between link P3 and P6

are normal navigation of HTML pages as (E1). E1 has set of

links between pages as {P2 - P5, P5 - P6, P3 - P6, P4 - P7}. The

link between P1 and {f1, f2, f3}, indicates that page P1

decomposes to f1, f2, f3 where the pages P2, P3, P4 are initially

loaded to the frames f1, f2, f3 respectively (E2). E2 has set as

{P1- (f1, f2, f3), (f1 - P2, f2 - P2, f3 - P4)}. In the web model, N1

has set of nodes {P5, P6, P7} with simple HTML pages without

frames, and N2 have a set of nodes {P1, P2, P3, P4} pages with

frames. Page P6 is considered to be the target page in this

example. In the flow analysis of the web structure, P1 is the

initial node or home page. Subsequently, nodes covered as P2,

P3, P4, P5, P6, and P7. Observing Fig 1 of our web model, we

have three dominators, to reach P6 (target page).

The dominators in the dominator analysis are the root node

P1, the frames {f1, f2, f3} and other nodes (P2, P3, P5) covering

P3. The shortest path from P1 to P3 has weight 0, having the

sequence P1, {f1, f2, f3}, {f2, P3 }. As pages P2, P3, P4 are

automatically loaded into the frames {f1, f2, f3}, weight count is

0. The link selection or weight is 1 for P1 to P6, since the

requirement for navigation is

from P3 to P6 (target page).

Path Analysis in Web Page Application

111

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

Searching for a given document is very difficult when the path

is long. So, the developer always tries to provide a

well-designed website to reach the documents with the

shortest path.

A. Reaching frames and frames to pages

 The computation of reaching frames and reaching frames to

pages is essential to determine the set of frames in which the

page appears. The set of frames are treated as an initial page.

In our web model in Figure 1, the set of three frames are in the

initial page . Computation of reaching frames and the

frames to pages on a website is discussed in the frame analysis

framework [22]. The propagation of flow information is the

basic idea behind the flow analysis.

The flow equations required for the computation of reaching

frames will be:

=

 A frame, represents n is a node generates flow

information,) says, it overrides any previous

frame. The flow information representing f is generated, but

flow information is not killed. That shown in the notation

(). The notation (pred (n)), the set

of each node n collects information about all closing frames

with sets of predecessors of n (pred (n)). Here,

 set is acquired by subtracting the set

and adding with the set. The site server provides the

root of the graph associated with the first page. The graph has

an empty set. Until a fixed point is reached, the

flow of information is repeatedly propagated to the graph.

According to Figure 1, flow propagation is occurred along the

edges and from each node n = . The

resulting analysis is found in the set of each

node, and that is the collection of all frames into the page

associated to the node.

Fig 2. Frame computation for reaching frames to pages

 The result of the reaching frames and frames to pages is

shown in Fig 2. The fixed point is reached to get the proper

node after the propagation flow information. This

propagation flow information is determined using

and sets given in Figure 2. In that Figure 2, is

the top level node. All other pages are displayed in

 frames. If an edge added from to then

 . From this, it is clear

that is loaded at or at the top level. By this reaching

frame and frames to page analysis, the presence of unwanted

pages and frames can be traced out.

Fig 2 shows the frame computation of Figure 1. The initial

page of this site has a label g in its FLOW set to denote the

top frame. Frames generate themselves as flow

information, overriding any incoming data. The

and sets are determined, after propagating the

flow information until the fixed-point is reached.

B. Shortest path

A website may require traversing several pages to reach a

document. Useful information about a website is the

minimum number of pages that must be visited before

reaching a target document. In a graph, the root node taken as

m, the shortest path from m to any other node n is the path

from m to n with the minimum total weight associated with the

edges if there is real user selection, which is a “mouse clicks”,

then the edge is weighted as 1. Otherwise, weight is 0, as it is

loaded automatically. We suggest an algorithm named

Shortest_path_A*, to find the shortest path from the root node

to any target node in a web model, using the concept of A*

algorithm. A* algorithm is known as a heuristic featured

algorithm or informed search algorithm, which calculates f(n)

= g(n) + h(n), where f (n) is the heuristic function, g(n) is the

distance/cost of a node n from the initial node, and h(n) is the

distance/cost of a node n from goal node. For the

implementation of the algorithm, we use two lists as OList

(open list) and CList (closed list). The proposed

Shortest_path_ A* algorithm is used to satisfy the covering

nodes in the web model is as follows:

 Shorest_path_ A* ALGORITHM

//INPUT1: weighted web model //weights are assigned to the

links, for the “mouse clicks”, the edges are weighted as 1

otherwise weights 0, when it loads automatically.

//INPUT2: targeted page

Step 1: Place the initial node or start node on to an OList. //P1

placed in OList

Step 2: Remove from OList and process it and place onto the

CList. // P1 placed in CList

Step 3: If it is a goal node, return success and stop the process.

// Not a goal node

Otherwise

Step 4: Place the children node if any on to the OList. // {P2,

P3, P4} placed in OList

Step 5: Calculate heuristic value [f (n)] of each node in the

OList.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

112

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

Step 6: The node having minimum heuristic value will be

removed from OList and placed into the CList. // P3 is placed

to CList as f (n) value of P3 is 1, and that is the minimum

heuristic value

Step 7: The process will be continued until the goal node is

reached.

Step 8: End the process.

C. Explanation of the algorithm

 P1 is the initial node, and P6 is our goal node in the web

model. Initially, the two lists OList and CList are empty.

OList is used to place the Initial node and the associated

children nodes. CList is used to place the heuristic value of the

initial node taken and the corresponding minimum heuristic

values among the children nodes in the web model. Here, f (n)

values of all existing nodes are calculated in the web model.

The initial node P1 is placed in the OList. Then f (n) value of

P1 is calculated. We get the f (n) value of P1 will be 3

calculating f (n) = (0+3) = 3. If P1 is a goal node, then it

returns success. Otherwise, it will Place the children nodes

P2, P3, P4 in the OList. Calculating f (n) value of P2, P3, P4,

we get f (n) value of P2, P3, P4 will be 2, 1, and 5

respectively. The node P3 has minimum heuristic value

among all other nodes P2, P4. So P3 will be placed in CList.

Now, we get P3 is not a goal node. Then the children nodes

P2, P4, P6 are placed in the OList. Again calculating f (n)

value of P2, P4, P6, we get 2, 5, and 1 respectively. The node

P6 has minimum heuristic value will be placed in the CList,

which is a goal node. We get the f (n) value of P5 and P7 will

be 2, and 7, which are bigger than the f (n) value of P6. So P6

is our goal node, placed in CList. So, after getting the goal

node, the process is stopped.

Static Verification

 To detect possible faults and anomalies, static analysis can

be done by scanning the HTML pages on the website. Static

checks can be done with navigation paths provided to the user

as well as data flows of the information gathered by the user.

More discussion on static analysis is given in the paper [18].

In the static analysis the presence of unreachable pages, ghost

pages can be detected. For the unreachable pages, pages are

found in the server side, but it cannot reach to the client side

given to the user starting from the initial page to any path

covered in the same way ghost page associated with pending

links, which are linking to non-existing pages. For the static

verification testing, All-path has an essential factor to detect

faults in the web. In our paper, we apply the same method to

find unreachable pages or failure links as well as for frame

testing in the subsection (Testing with selenium web driver).

We have embedded three frames and checks for static analysis

using some criteria as:

I. Page testing- In some test cases every page is visited at

least once.

II. Hyperlink testing- In some test cases every hyperlink

from every page in the website traversed at least

once.

III. All-paths testing- Every given path should be traversed

at least once.

D. Testing with Selenium web driver

 The utilisation of A* algorithm is very much helpful for

reachable pages without covering unnecessary/pointless

pages. However, to find out Unreachable pages or broken

links, A* algorithm is not competent. So to get the

Unreachable pages, we utilise different methodologies by

implementing an HTML sample page. In this section, we have

taken three nested frames. An HTML code is composed for

the nested frames (f1, f2, f3) for our web model shown in Fig

1. In the nested frame, we find f1 frame has website

http://www.learn-automation.com, f2 frame has website

http://www.seleniumhq.org, and the f3 frame has web site

http://www.html.com. We conduct testing of nested frames,

and we test to get the Unreachable pages and ghost pages. The

Selenium tool shows how the frames are moving from one

frame to other (order of frame execution), frame count, and

confirm the broken links or Unreachable pages.

HTML CODE:

<! DOCTYPE html>

<Html>

<Body>

<iframe src="http://www.learn-automation.com"

width="400" height="400" name="selenium">

<p>your browser does not support iframe. </p>

</iframe>

<iframe src="http://www.seleniumhq.org” width="400"

height="400" title="selenium_news">

<p>your browser does not support iframe. </p>

</iframe>

<iframe src="http://www.html.com" width="400"

height="400" id="html">

<p>your browser does not support iframe. </p>

</iframe>

Click here for selenium tutorial

</body>

</html>

Fig 3. Embedded frames

 Fig 3 shows an embedded frame using the above HTML

code. In this figure, three websites are embedded into one web

page.

Path Analysis in Web Page Application

113

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

The websites we have taken are www.learn-automation.com,

www.seleniumhq.org, www.html.com. With the help of

Selenium web driver, we found the frame count as well as the

order of the frames in the web page.

Fig 4. Frame testing with Firefox web browser

Fig 4 shows the frame testing which is done using the

Firefox web browser (47.0.1) and makes our test frames

passed. As shown in Fig 3, the frame count is 3 in the given

web model (Fig 1). Using findElement () method, we count

the total size of frames in the web model. Total size is 3

(shown in Fig 4) for the given web model. This type of testing

is beneficial when some frames are embedded in one website.

To switch from one frame to the other, firstly we have to come

to the parent frame from any other frame. Here, we have taken

our parent frame at www.learn-automation.com. This is the

proper way to identify the frames when internally the number

of frames are more and not possible to count the frames

visually. With the iframe testing, the tester can switch to the

first frame, do some operation and moves to the second frame,

third frame etc. The console window shows that the testing

makes our test frames passed, and it is working as expected.

Fig 5. Result for frame testing using TestNG in Firefox

web browser

 In the Selenium framework environment, it has two

windows as a console window and TestNG window. The

console window makes the testing pass or fail, and the TestNG

window gives the summary of the testing used. In the same

Selenium environment, TestNG is a testing framework inspired

by JUnit and it supports a variety of tools and plug-ins such as

Eclipse, IDE, and Maven etc. TestNG provides so many

additional functionalities, using them tester can create a very

robust framework itself. Reports are auto-generated by TestNG

and for the Selenium web driver, TestNG is the default

framework. Fig 5 shows the result for the running class we have

used and the complete report of the testing. The report in the Fig

5 shows the testing of the frames as pass.

Fig 6. Frame testing in Google Chrome web browser

Again the same frame testing is done with Google Chrome

(59.0.3), which is shown in Fig 6. Firefox web browser is very

compatible to Selenium web driver, but the processing speed

is much faster in Google Chrome rather than Firefox web

browser.

Fig 7. Result for frame testing using TestNG in the Google

Chrome web browser

Fig 7 shows the result of the class we have used for the

Google Chrome web browser, showing in green.

 In this section of TestNG, it shows the summary of our

testing method.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-5, January 2019

114

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

Fig 8. Shows the testing of unreachable pages of the website

named as www.seleniumhq.org in the Firefox web browser. We

verify all the links of the website and the result shows that there

is no broken links and links are working correctly with giving

“Ok” messages. If it is a “page not found” message according to

the response code, which means a page is unreachable or page

error occurred. With broken links testing, we can also be able to

find broken images and the overall status of the website. It can

also check for the Ghost pages in the website giving the

messages as “page error”, “connection timeout” etc. The model

of the site created can analyse the existence of the Unreachable

pages. Testing is done with checking all links of the page, and

also it checked all anchor links. It verifies how many links are

there with the returning list of web elements. Here, in

seleniumhq.org website, we found total 66 links and all are

working as expected without any error message. Similarly,

other websites are taken in our application can be checked for

broken links or unreachable pages.

E. Evaluation output report

Table 1. Frames with the associated websites

Frame 1 Frame 2 Frame 3

www.learna

utomation.c

om

www.seleniumhq.org www.html.com

Total links

83

No broken

links found

Total links 86

No broken links found

Total links 89

No broken

links found

Table 2. Frame count and passed test frames

Frame

count

 in

Firefox

web

browser

The result of

frame testing in

Firefox

web browser

Frame count

in Google

Chrome

web browser

Result of

frame testing in

Google

Chrome

web browser

 3 Passed test

frame

3 Passed test frame

 Here Table1 and Table 2 present an assessment report of the

frame testing. Table 1 demonstrates the yield report of the

aggregate links and broken links of the sites, where Table 2

demonstrates the yield report of the frame count and test

frames passed/ failed.

V. COMPARISON WITH EXISTING WORK

 In paper [18], they claim that the longest shortest path of a site

may be an indicator of better structure. In their approach before

reaching the page enMapITC. htm, four other pages must be

visited. They conclude that the longest shortest path of a site can

be an indicator of good structure. However, the demerit they

find that a high value of this measure can be associated with the

possible structural problem. Our approach holds that

unnecessarily visit other pages in not always ideal. We go for

reaching the target page earlier with consuming less time.

Before reaching the target page, the user visits minimum no of

pages. They have used Dijkstra’s Algorithm which finds the

single source shortest path to all reachable destinations in a

graph. It doesn’t allow negative edges. We have used A* Search

Algorithm, on the other hand, uses a heuristic function to guide

the search. That is: f(n)=g(n)+h(n)f(n)=g(n)+h(n), where g(n) is

the distance from source to node n and h(n) is a heuristic to

estimate the distance from node n to destination node. The g (n)

& h (n) are two forces in opposite directions. If search goes way

too deep in a path where the heuristic function doesn’t have

much to promise, then g (n) pulls it back to relax more

promising paths. The key difference between Dijkstra and A*

search algorithm is that A* algorithm focuses on reaching the

goal node from the current node, not to reach every other node.

In paper [18], they have focused on the structure and history

analysis. However, in our view, the Centre of attention is the

maintenance issues of the website as well as the implementation

of HTML code to confirm reachable and unreachable pages.

VI. CONCLUSION

 In this paper, we proposed a web model. We suggested an

existing algorithm for shortest path calculation that uses the

concept of A* algorithm and our proposed work is also

evaluated with Selenium web driver tool to find out broken links

or unreachable pages and ghost pages in the website. In this

process of activities, we concluded that automatic support for

verification and validation activities could be very beneficial.

We found that all paths in the website are thoroughly examined

before delivering the web pages. In this testing, we observed a

high level of automation in generating the test cases using

Selenium web driver. It is essential to find out the shortest path

to reach the target page for the user when the path is long for the

websites having set of web pages. In that condition, our

algorithm satisfactorily accomplished in finding the shortest

path to reach the targeted document. Our experimental

applications for Selenium testing guaranteed the quality of

websites having set of web pages. Future work suggests that

testing of dynamically created pages with extending the

conceptual model is required to analyse and display websites for

that dynamic testing also advisable for thorough testing of

websites.

REFERENCES

1. Montgomery, D. C. Design and analysis of experiments. John Wiley &

Sons, 2017.

2. Marchetto, A., Tonella, P., & Ricca, F. Testing techniques applied to

Ajax web applications. In Proceedings of the Workshop on Web

Quality, Verification and Validation, WQVV’07, 2007.

Path Analysis in Web Page Application

115

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1951017519/19©BEIESP

Journal Website: www.ijrte.org

3. Costa, M., Gomes, D., & Silva, M. J. The evolution of web archiving.

International Journal on Digital Libraries, 18(3), 2017, pp. 191-205.

4. Felke-Morris, T. Basics of web design: HTML5 & CSS3. Pearson,

2014.

5. Conallen, J. Building Web applications with UML. Addison-Wesley

Longman Publishing Co., Inc, 2002.

6. Gojare, S., Joshi, R., & Gaigaware, D. Analysis and Design of Selenium

WebDriver Automation Testing Framework. Procedia Computer

Science, 50, 2015, pp. 341-346.

7. Panthi, V., & Mohapatra, D. P. An approach for dynamic web

application testing using MBT. International Journal of System

Assurance Engineering and Management, 8(2), 2017, pp. 1704-1716.

8. Hall, M., Brown, L., & Chaikin, Y. Core Servlets and JavaServer Pages:

Advanced Technologies. Pearson Education, 2, 2007.

9. Brown, D., Pandya, A., Mulgrew, Z., Smith, J., Miller, A., & Kusuma,

A. Dynamic loading of routes in a single-page application. U.S. Patent

No. 9,967,309. Washington, DC: U.S. Patent and Trademark Office,

2018.

10. Andrews, A. A., Offutt, J., & Alexander, R. T. Testing web applications

by modelling with FSMs. Software and Systems Modeling, 4(3), 2005,

pp. 326-345.

11. Bellettini, C., Marchetto, A., & Trentini, A. TestUml: user-metrics

driven web applications testing. In Proceedings of the 2005 ACM

symposium on applied computing, 2005, pp. 1694-1698.

12. Ricca, F., & Tonella, P. Building a tool for the analysis and testing of

web applications: Problems and solutions. Tools and Algorithms for the

Construction and Analysis of Systems, 2001, pp. 373-388.

13. Tonella, P., & Ricca, F. A 2-layer model for the white-box testing of web

applications. In Web Site Evolution, Sixth IEEE International Workshop

on (WSE'04), 2004, pp. 11-19.

14. Hoffmann, M. R., Brock, J., & Mandrikov, E. Eclemma-java code

coverage for eclipse, 2009.

15. Kessis, M., Ledru, Y., & Vandome, G. Experiences in coverage testing

of a Java middleware. In Proceedings of the 5th international workshop

on Software engineering and middleware, ACM, 2005, pp. 39-45.

16. Bellettini, C., Marchetto, A., & Trentini, A. Dynamical extraction of

web applications models via mutation analysis.

INFORMATION-YAMAGUCHI-, 8(5), 673, 2005.

17. Tonella, P., & Ricca, F. Dynamic model extraction and statistical

analysis of web applications. In Web Site Evolution, 2002. Proceedings.

Fourth International Workshop on IEEE, 2002, pp. 43-52.

18. Ricca, F., & Tonella, P. Web Site Analysis: Structure and Evolution. In

icsm, 76, 2000.

19. Di Sciascio, E., Donini, F. M., Mongiello, M., & Piscitelli, G. An Web: a

system for automatic support to web application verification. In

Proceedings of the 14th international conference on Software

engineering and knowledge engineering, ACM, 2002, pp. 609-616.

20. Ricca, F., & Tonella, P. Understanding and restructuring Web sites with

ReWeb. IEEE MultiMedia, 8(2), 2001, pp. 40-51.

21. Di Lucca, G. A., & Fasolino, A. R. Testing Web-based applications: The

state of the art and future trends. Information and Software Technology,

48(12), 2006, pp. 1172-1186.

22. Aho, A. V., Sethi, R., & Ullman, J. D. Compilers, Principles,

Techniques. Addison Wesley, 7(8), 9, 1986.

AUTHORS PROFILE

 Sonali Pradhan, has completed her B.Tech

and M.Tech in Computer Science and

Engineering from BPUT, Odisha. Now she is

continuing her research (PhD.) in SOA,

University, Bhubaneswar. She has attended

many conferences like IEEE, Springer,

Elsevier etc. Her area of interest is

Software testing.

Mitrabinda Ray has completed her PhD. degree

from NIT, Rourkela. Now she is working as an

associate professor in SOA, University,

Bhubaneswar, in the department of Computer

Science and Engineering. Her area of interest is

software testing, software reliability & estimation.

She has published a number of papers in different

journals and conferences.

.

