Abstract: The geometric nonlinear stress-strain state of functionally graded Epitrochoidal Shells under pressure and thermal environment is investigated in this work. Material properties are taken as temperature dependent. Finite element solutions are obtained using the commercially soft-ware ANSYS. The effect of different geometry and material property parameters on the stress-strain state of functionally graded Epitrochoidal Shells under pressure and thermal environment is demonstrated. Finally, the change of the stresses, displacements, rotations and strains were investigated and presented.

Index Terms: Functionally Graded Material, Cyclic Shells, Functionally Graded Epitrochoidal Shell, Mechanical and Thermal Material Properties, Conservative, Non-Conservative, Block Lanczos Method, Spectral Transformations.

I. INTRODUCTION

The Madrid International Conference on Shells and Spatial Structure (ICSS) in 1989 gave rise to worldwide more interest of architects for shells of complex geometry. Some of them are epitrochoidal shells which are investigated in this article.

The generation of epitrochoidal surfaces

Let’s take a point M in the plane of a circle of a radius a, rolling without sliding along another stationary circle with radius b, plots an epitrochoidal curve. The constant angle formed by these two circles is denoted by γ. The distance from a point M to the centre of the mobile circle is equal to µa (µ≥0).

The variation the angle γ from 0 to 2π generates a set of epitrochoidal curves that form epitrochoidal surfaces, which are middle surfaces of thin-walled epitrochoidal shells.

Figure 1. Epitrochoidal Surfaces

This implicit form of definition of an epitrochoidal surface has been described in [1], [2] for a = b. The plane XOY crosses an epitrochoidal surface along an epitrochoidal curve, which is called a “limaçon of Pascal” as well.

Parametrical equations are as follows:

\[
\begin{align*}
x &= x(\alpha, \beta) = 2R(\alpha)\cos^2(\beta)\cos(\alpha) \\
y &= y(\alpha, \beta) = 2R(\alpha)\cos^2(\beta)\sin(\alpha) \\
z &= z(\alpha, \beta) = R(\alpha)\sin(2\beta)
\end{align*}
\]

where \(R(\alpha) = a(1 + \mu \cos(\alpha))\). Here \(R(\alpha)\) is the radius of a generatrix circle; \(\alpha\) is the angle of the axis Ox with a plane of the generatrix circle\(0 \leq \alpha \leq 2\pi\); \(\beta = \frac{\pi}{2}\) is an angle of the radius vector of the surface with the plane of the stationary circle \((-\frac{\pi}{2} \leq \beta \leq \frac{\pi}{2}\)). Using this method of definition of a surface, one must remember that the surface is generated by rotation of a mobile circle with a radius \(a\) about its tangent at the point of tangency with the stationary circle of a radius \(a = b\). Generatrix circles of the surface lie in the planes of one pencil.
The functionally graded segment of an epitrochoidal shell is under pressure and thermal loading. The mechanical and thermal material properties used in the present study are listed in Table 1. In this work, the Finite Element Method is used for modeling functionally graded segment of an epitrochoidal shell with uniform thickness h.

Here, the derivation of the geometric stiffness matrix is somewhat different but consistent with the approach used throughout this text. The nonlinear equilibrium equations for a flat triangular shell element in its local coordinates system are first perturbed to yield the in-plane geometric stiffness matrix. Then out-of-plane considerations that involve the effect of rigid body rotations on member forces yield an out-of-plane geometric stiffness matrix. The shell element that was chosen for that purpose combines the constant stress triangle (CST), flat triangular membrane element and flat triangular plate element suggested in the discrete Kirchhoff theory (DKT).

4. Geometric Stiffness Matrix of Triangular Element Shells

The local geometric stiffness matrix of the shell element is split into three distinct matrices:

$$ [K_g]_{total} = [K_g]_{mem} + [K_g]_{plate} + [K_g]_{shell} $$

where the first, second and third terms on the R.H.S. of the above equation represent the in-plane geometric stiffness matrix of the membrane, the in-plane geometric stiffness matrix of the plate and the out-of-plane geometric stiffness matrix of the shell element respectively.

The geometrically nonlinear triangular shell element has eighteen local degrees of freedom (DOF’s): 3 displacements and 3 rotations at each node. The membrane element contributes to nine displacements DOF’s only. The basic three nodded constant stress triangular flat element has only six local displacement DOF’s that are shown in Figure 2. The out-of-plane contribution (the normal stiffness) of the membrane element to the basic local shell element is a displacement DOF in the direction which is normal to the plane of the element.

Finite element solution for the stress-strain behavior of present FG model is proposed using Block Lanczos method in the software computation process.
5. Block Lanczos method with spectral transformations

The Lanczos method [7], [8], [9] is recognized as a most powerful tool for extraction of large number of eigenpairs in large-scale problems of structural mechanics. The stability of its computational process is ensured by a selective or/and partial re-orthogonalization. For long Lanczos processes [10] the selective re-orthogonalization fails to succeed. On the contrary, the partial re-orthogonalization [9], [11] keeps Lanczos vectors highly orthogonal and ensures a highly stable computation. Therefore, we employ the block version of partial re-orthogonalization [12].

Conventional algorithms of Lanczos method possess the following disadvantage when the large-scale problems containing 60 000 - 500 000 and more equations are to be solved: at each step of Lanczos vector generation it is necessary to make the forward-back substitutions only for a single right-side vector (r. s. v.). Due to this a lot of computation time is spent for input-output (I/O) operations because the upper part of the factored matrix \(U \), where \(K = LU \) and \(K \) is a stiffness matrix, must be read twice block-by-block from a secondary storage (disk) per each Lanczos vector.

The second problem is related to the drastic increase of amount of operations when the dimension of Krylov subspace (number of generated Lanczos vectors) is big enough (usually exceeds ~100). The block version of Lanczos algorithm is intended to reduce the I/O effort. Spectral transformations are implemented to split the long Lanczos process into a few relatively short ones. It reduces essentially the computation time when a large number of eigenpairs (100 - 1000 and more) are required.

The shell is modelled and analyzed with the commercial software ANSYS through its parametric design language (APDL) code. A shell element (SHELL181), defined in the ANSYS library, is used to discretize the FG segment of epitrochoidal shell (\(\mu=0.3 \)). This shell element has a total of six degrees of freedom per node i.e., translations and rotations, both in the x, y and z directions. The results of this numerical modelling are shown in Figures 3, 4, 5, 6, 7 and 8.

II. RESULTS AND DISCUSSIONS

In this section, the stress-strain behaviour of FG segment of epitrochoidal shell is performed under pressure and uniform temperature field (\(T = 700^\circ \text{K} \)). It is discretized and solved using finite element steps in ANSYS APDL platform.

Figure 3 shows displacement variation for FG segment of epitrochoidal shell under pressure and thermal loading. The overall displacement varies from 0.00m to 0.021418m.

Figure 4 shows the rotation variation for FG segment of epitrochoidal shell under pressure and thermal loading. The stress varies from 0.01557 to 0.140126.

Figure 5 shows Von Misses total mechanical and thermal strain variation for FG segment of epitrochoidal shell under pressure and thermal loading. The strain varies from -0.472·10^3 to 0.375822.

Figure 6 shows X-component of total mechanical and thermal variation for FG segment of epitrochoidal shell under pressure and thermal loading. The strain varies from -0.3391 to 0.136443.

Figure 7 shows Y-component of total mechanical and thermal variation for FG segment of epitrochoidal shell under pressure and thermal loading. The strain varies from -0.3391 to 0.136443.

Figure 8 shows Z-component of total mechanical and thermal variation for FG segment of epitrochoidal shell under pressure and thermal loading. The strain varies from -0.3391 to 0.136443.
III. Conclusions

In this study, the thermal stress-strain behaviour of FG segment of epitrochoidal shell under pressure and uniform temperature field are investigated. In addition, temperature dependent material properties of FGM constituents are considered. Finite element solution for the stress-strain behaviour of present FG model is proposed using Block Lanczos method. The influences of different material and geometrical parameters on the thermal stress-strain of FG segment of epitrochoidal shell are illustrated. Finally, the change of the stresses, displacements, rotations and stains were investigated and presented.

ACKNOWLEDGEMENT

This paper was financially supported by the Ministry of Education and Science of the Russian Federation on the program to improve the competitiveness of Peoples’ Friendship University of Russia (RUDN University) among the world’s leading research and educational centres in the 2016 – 2020.

REFERENCES