Fuzzy Based Estimation of Enhanced Colour Illumination for Digital Images

P. Saravanan Kumar, T. V. P. Sundararajan, J. Poornimasre

Abstract: Communication between living beings is more essential with the fundamentals of digital forgeries to make an effort to develop a step by step procedure for image detection in a powerful way with the use of various media elementary pictorial representation of any information can be easily manipulated using editing software. Communication between users is carried by image transmission, in which major issue is security that is without any alteration. Image forgery detection is technique for detecting any unauthorized process in image. In compared with existing, use fuzzy classifier to accurate results for comparison instead of SVM classifier. Weintroduced detection method against image splicing, that is joining of two different image fragments. This detection is brought by using conflicting of illuminating colours in whole image. Using illuminate estimation, extracting features such as shape and colour of images and finally classified in Fuzzy logic classifier. Performance of forgery detection is evolved as accuracy using testing process. From our experimental results, conclude that high accuracy provided by extract combining shape and colour features of image, which compared with other.

Keywords: Fuzzy classifier; Feature extraction; Segmentation; Illuminant map; SVM Classifier; Image forgery;

I. INTRODUCTION

One of the most usual form sof manipulating images is the digital way of splitting one or more images turning into atomic composite image [1]. On careful examination, the line between the divided images is visually invisible on the spliced regions. There are many attributes for digital images in tamper detection algorithm, specifically the colour and brightness of every single pixels as well as its resolution and format [2].

Those attributes are more useful in analysing and comparing images in digital image forensics in view to develop a step by step procedure for identifying the image forgeries, especially image tampering [3]. This paper is more focussed on JPEG format images and data compression scheme so that the data can be collected for detecting the digital forgery. One more fundamental attribute in any digital forgery is direction filter that is used in detection of the grey level region in digital images.

There are two broad categories of digital image forgery.
1. Copy-Move Forgery – by mixing a part of an image with another part of an image.
2. Copy-Create Forgery – by both copy and paste of a part from one or more images into another part of an image.

While doing any kind of manipulation in a composite image, it is hard to do proper adjustment of illuminations [4]. Normally the illuminant colour estimated from an image is analysed and an illuminant map is drawn. It is also more challenging to draw the illuminant map of a composite image [5]. The human visualization is quite incompetent in assessing the environmental illuminations that misleads to false judging on the digital images. So it is necessary to transfer the tampering information to the objective algorithm [6].

If the input data size is too large, to be processed for an algorithm and redundant, then that redundant data has to be transformed with a minimal set of features vector and this method of transformation is called as feature extraction [7]. These feature vectors are chosen in such a way that it should have more relevant information in less vectors. This feature extraction is more necessary in digital images because it involves more accurately in extracting the required information from a very large set of data [8]. While performing complex data analysis, an important concern is the number of variables involved, as it requires more memory for computing power and an algorithm to classify the training sample data. Normally any change in the illuminant estimation can lead to discontinuity in the illuminant map [9].

The various reasons that leads to dissimilar illuminant estimation are change in geometry, material change, noise, changes in incident light. So anyone can use the illuminant estimate as a low level descriptor of that corresponding image [10].

On Observing the edges detected from the images will be the combination of segment borders and isoimages (area of an image having similar incident light) only in most of the cases [11]. On splicing an image, there is a possibility of difference in the edges from the original image [12]. To avoid such discontinuity in the edges, a new feature descriptor is proposed called as Histogram of Oriented Gradient (HOG) edges. It computes the visual directories of intensities (gradient) around the edge points based on the known HOG descriptors [13].

Firstly equally distributed points are extracted along the illuminant map edges and HOG descriptors are calculated based on these points. A visual words dictionary will contain these descriptors. All these steps are summarised briefly in the upcoming sections [14].

The way of distributing the pixel intensity gradients or edge detections can describe the appearance of a local object and shape within that image that finally leads to the base of HOG descriptors. These descriptors are achieved by division of images into small inter-connected regions called as cells and for every cell,
a histogram is generated for gradient detections or edge orientations for the given pixel [15]. To improve the accuracy of the descriptors, all the local histograms can be normalized by calculating the block intensity and this value can be used for normalizing all the cells in a particular block. This normalization process will give us a better invariance to the changes in pixel illumination or shadowing [16]. In the proposed method, an image forgery detection is predicted on anymalfunction in capturing image from digital cameras, colour illumination estimation and image features like shape and colour that are extracted are fed into fuzzy classifier. Infuzzy classifier, training images are compared with testing images for analysing the forgery in images. The proposed system’s accuracy is compared with various illuminating techniques.

II. OVERVIEW

The overall proposed block connectivity diagram for the digital image forgery detection technique is illustrated below diagram.

![Fig.No.1 Block Diagram of Forgery Detection](image)

From the training samples of digital images are given as input to the face extracting block for estimating illuminant colours and extracting illuminant features of an image. For estimation illuminant colour of the skin, the focus is given to the face region of an image, based on pixel and edges. In between these two processes, segmentation process has to be done, since segmentation is a pre-processing step for estimation of colour illumination. After getting the segmented image, calculate the colour illumination that leads to illuminate map generation [17]. From the illuminant map, features like shape (using HOG edge features) and colour (using colour moments feature) can be extracted. Both the extracted features are fed into fuzzy classifier for cross checking the originality of the image.

III. METHODOLOGY

A. Face Extraction:

From the digital input image, face is only located by manual face extraction by means of human interaction. When compared to automatic face extraction, possibility of false detection is less in manual extraction [18].

B. Segmentation:

This is done by using k nearest neighbour segmentation (KNN) process. This algorithm is used in formation of clustering with similar points. KNN algorithm use geometric distance between similarity and dissimilarity between images without using statistical data [19].

C. Illumination Colour Estimation:

After segmentation, estimation of colour illumination is used to form illuminating map. For estimation, two techniques called as pixel and edge based. In pixel based, consider three types such as grey pixel, max-RGB and grey shades. Grey world hypothesis uses natural or white source light for estimation, reflected light is achromatic. Max-RGB estimates illumination colour from maximum response in RGB channel [20]. In edge based, illumination colour is estimated by weighted edge. Finally, illumination colour is calculated by using pixel and edge based estimation techniques [21].

D. Illuminant Map:

After attaining the segmented image, can be used for the estimation of colour illuminant using pixel and edge based methods having the same index number. Apply the obtained colour illuminant result to the segments. Then the resulting output will be a coloured representation of image called as Illuminate Map [22].

E. Feature Extraction:

In extraction process, two features of shape and colour are extracted using Histogram of Gradients (HOG) and colour moments (CM). From illuminate map, all the edges will act as a border pixel. Then changes in statistical characteristic of edges indicate splicing action had been happened. HOG is a feature descriptor that extracts features. In colour moments, mean and standard deviation of colour distribution is estimated in order wise. Colour is a scaling parameter and rotation invariant [23].

F. Fuzzy Classifier:

Fuzzy Classifier is the process of map formation from the given input to output using fuzzy logic. This process of fuzzy classifier involves membership functions, fuzzy logic operators and if-then rules [24]. Normally there are two different types of fuzzy classification systems that can be implemented in the Fuzzy Logic Toolbox:

- Mamdani-type
- Sugeno-type

Mamdani’s fuzzy inference method uses the most commonly seen fuzzy methodology and it expects the output membership functions to be fuzzy sets. After the aggregation process, there is a fuzzy set for each output variable that needs to be fuzzification [25]. Sugeno-type systems can be used to model a system in which the output membership functions are either linear or constant [26]. From the existing method SVM is used for the classification, but not into the proposed method Fuzzy classifier used and substantial result is obtained. This method is applied to find out the forgery in the image. Fuzzy classifier is more effective than SVM classifier. Efficient result offorged image is found using Fuzzy classifier.
IV. CONCLUSION
The proposed system for imagesplicing detection that is detected any manipulation in original image. By using illumination colour estimation, get illuminant map of input image. From this map, features of images are extracted for comparing. For faster identification, fuzzy classifier has been used. In which splicing technique of joining images from any other images detected by pixel and edge-based technique. This method is used in forensics that identifies any malfunction in image. Experimental result shows that improved accuracy of detection when compared with existing detection and faster than existing. In this proposed technique, it requires small amount of human interaction to detect the image forgery in the digital images. In future, an efficient detection scheme of imagesplicing without human interaction can be developed.

REFERENCES