

Soft – Switched PFC Boost Converter with Integrated Flyback Converter

S.Kamalsakthi, J.Baskaran

Abstract- This paper presents a magnetic integration approach that reduces the number of magnetic components in a power supply by integrating magnetic components in two conversion stages. In this proposed approach a single transformer is used to implement the continuous conduction mode boost power factor corrected(PFC)converter and the DC/DC fly-back converter. The power factor is improved due to the presence of the boost converter. The size of the step-down transformer is reduced due to high frequency operation of fly-back converter. The AC supply is rectified using uncontrolled rectifier and it is boosted with the help of boost converter. The output of the boost converter is given to the fly-back converter, which converts DC to high frequency AC. The step-down transformer reduces this voltage and is rectified using half wave rectifier.

Keywords- DC/DC, AC, (PFC)

I. INTRODUCTION

The majority of today's AC/DC power supplies used in modern data processing and telecom equipment have a boost power factor corrected (PFC) front end and a low power stand-by-power supply. The front-end boost rectifier is employed to reduce the line current harmonics and to provide compliance with various world wide specifications governing the harmonic limits of the line current in ac/dc power supplies. The main purpose of stand-by power is to provide housekeeping power and to ensure system functionality when system is in power mode. The majority of stand-by powers are implemented with a fly-back converter due to its low parts count and its ability to operate, efficiently in a wide input voltage range.

To meet the challenges of the ever-present requirement to decrease the size of power conversion equipment, power supplies operating at higher switching frequencies is used. A further size reduction can be achieved by minimizing the number of components thro' components integration.

This paper presents a new magnetic integration approach where the reduction number of magnetic components in a power supply is achieved by utilizing the same magnetic in two conversion stages of the power supply. Specifically, in the proposed approach, a single transformer is used to implement the integration of the CCM PFC boost converter and the fly-back converter.

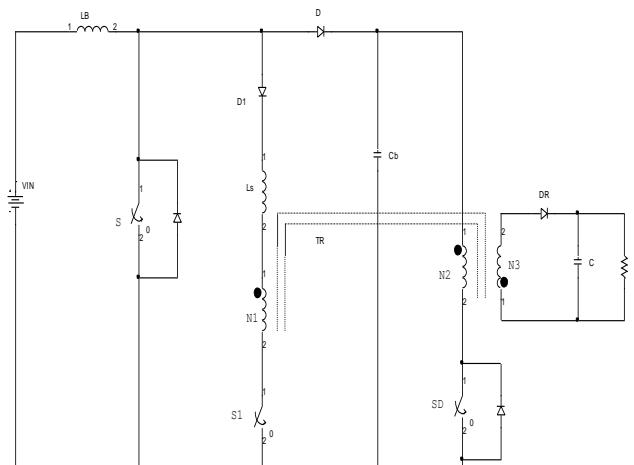
The proposed magnetically integrated boost and fly-back converters feature soft switching of all the semi-conductor switches.

Revised Manuscript Received on 30 January 2014.

* Correspondence Author

S.Kamalsakthi*, PG Scholar, Adhiparasakthi Engineering College Melmaruvathur, Tamilnadu, India.

J.Baskaran, Professor & HEAD,EEE department, Adhiparasakthi Engineering College Melmaruvathur, Tamilnadu, India.


© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an [open access](#) article under the CC-BY-NC-ND license <http://creativecommons.org/licenses/by-nc-nd/4.0/>

The boost switch and the primary side fly back converter switch are turned on at zero voltage, whereas the active snubber switch of the boost converter turns off at zero current. In addition, the boost rectifier is turned off softly with a controlled di/dt rate so that the reverse-recovery-related losses of the boost rectifier are virtually eliminated

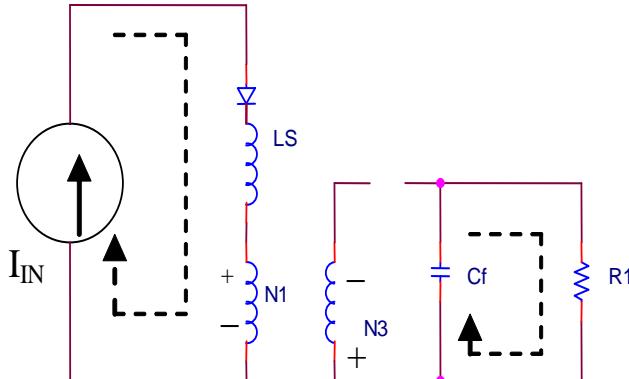
II. APPLICATIONS

- Telecom equipment.
- Fractional HP servo motors.
- Relays.
- CMOS Chips.

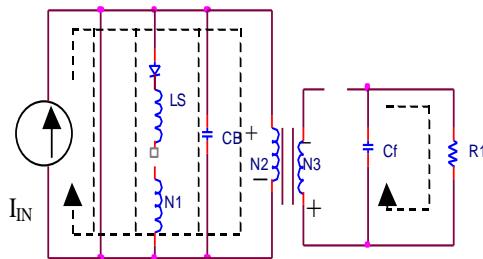
III. CIRCUIT DESCRIPTION

Fig:1 Circuit Diagram of PFC boost rectifier with integrated fly-back converter

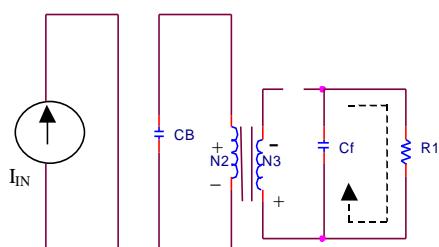
The circuit diagram of the proposed soft- switched boost converter magnetically integrated with a dc/dc fly-back converter is shown in Fig.. The boost converter consists of voltage source V_{IN} , boost inductor L_B , main switch S , boost rectifier D , energy storage capacitor C_B , and the active snubber circuit formed by auxiliary switch S_1 , winding N_1 of transformer TR , snubber inductor L_s and blocking diode D_1 . The dc/dc fly-back converter consist of switch S_D with an associated anti parallel diode, isolation transformer TR , and the secondary side circuit that consists of rectifier D_R and output capacitor C_f . To facilitate the circuit operation, the energy storage capacitor can be modeled as a voltage source V_B by assuming that the value of C_B is large so that the voltage ripple across the capacitor is small in comparison to its dc voltage. In addition, boost inductor L_B is modeled as constant current source I_{IN} by assuming that the inductance of L_B is large so that during a switching cycle the current through L_B does not change significantly.


Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)


© Copyright: All rights reserved

To simplify the control circuit timing diagram, the turn on of switch S_D is synchronized with the turn on of boost switch S. The auxiliary switch S_1 is turned on prior to turn on of switches S and S_D . In addition, auxiliary switch S_1 is turned off before S or S_D is turned off i.e., the proposed circuit operates with overlapping gate drive signals for the active snubber switch and the converter switches.


IV. MODES OF OPERATION

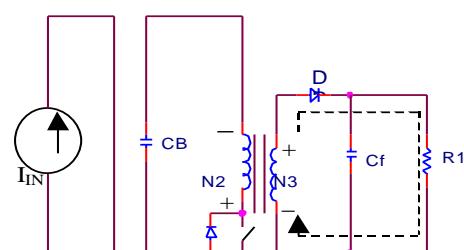
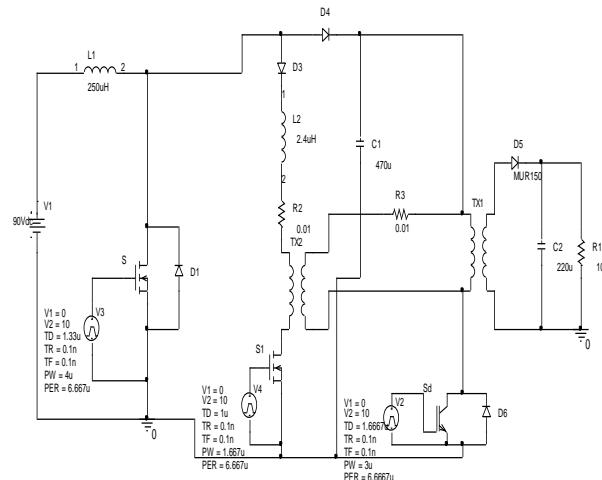

Fig:2 Mode 1

Fig : 3 Mode 2

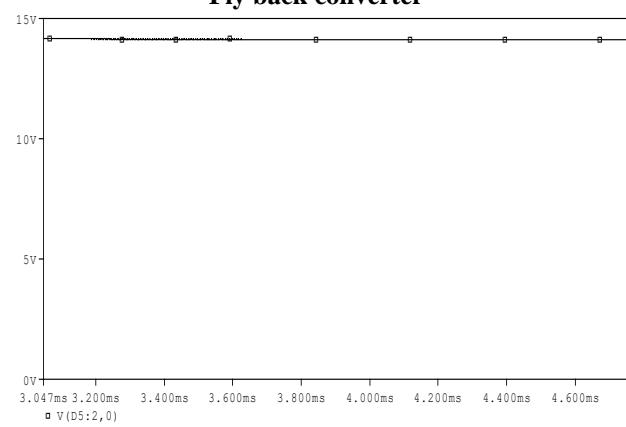
Fig : 4 Mode 3

Fig : 5 Mode 4

In mode1, switch S_1 is on as shown in fig (a), The entire input energy is transferred to the snubber inductor L_S and the current through the snubber inductor L_S increases.


In mode2 switch S_1 , S and S_D on as shown in fig(b), The input current flows through switch S. The current through the snubber inductor L_S decreases linearly until it reaches

zero. Now, the auxiliary switch S_1 is turned to achieve ZCS. The rectifier diode DR is reverse biased and does not conduct.


In mode3, S_1 and S_D are on as shown in fig(c), Since switch S_1 is turned off, the entire input current flows through the boost switch S. As a result, the front-end boost converter stage is completely dc coupled from the fly-back converter stage.

In mode4 switch S_D is turned off and switch S_1 continues to conduct as shown in fig6. As a result the polarity of the transformer winding N2 reverses and the diode Dr starts to conduct. Specifically, the boost switch S and the fly-back converter switch S_D are turned on at ZVS, whereas auxiliary switch S_1 is turned off at ZCS. In addition, boost diode D is turned off with a controlled turn-off rate of its current. Because all semiconductor components of the proposed converter operates with soft switching, the overall switching losses are minimized, which maximizes the conversion efficiency. In addition, soft switching has a beneficial effect on EMI and may result in a smaller size input filter.

V. SIMULATION CIRCUIT DIAGRAM

Fig : 6 A New Soft – Switched PFC boost Rectifier with Fly back converter

Fig :7 Output voltage

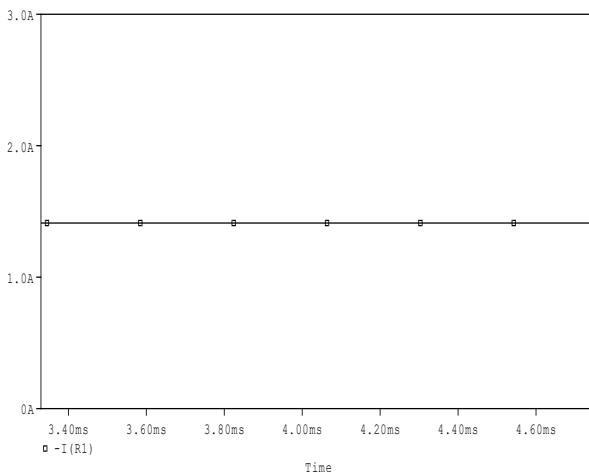


Fig : 8 Output current

Fig : 9 Transformer secondary side voltage

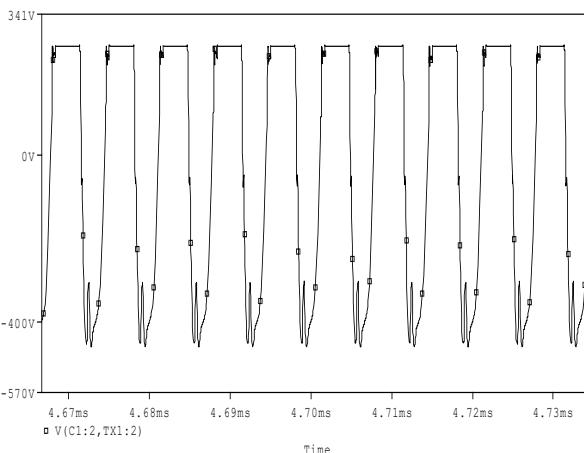


Fig : 10 Transformer primary side voltage

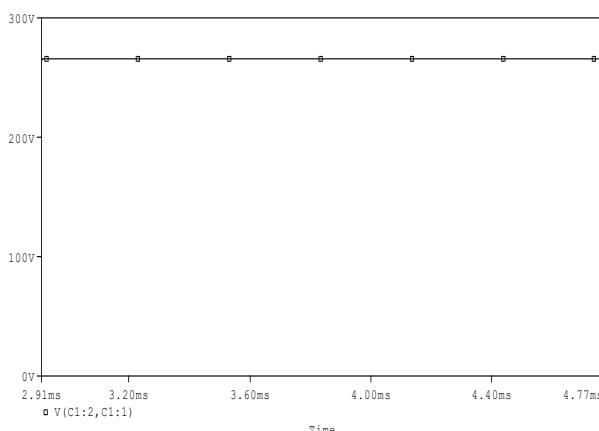


Fig : 11 Boost voltage

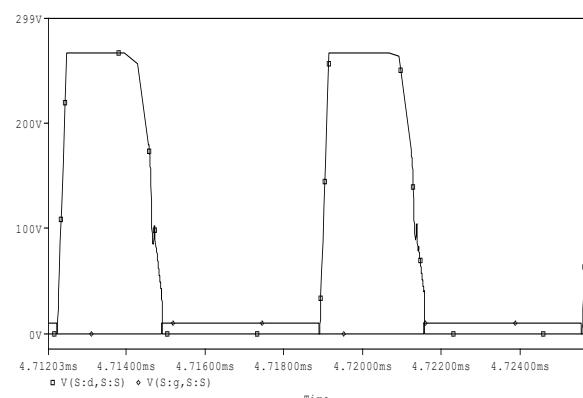
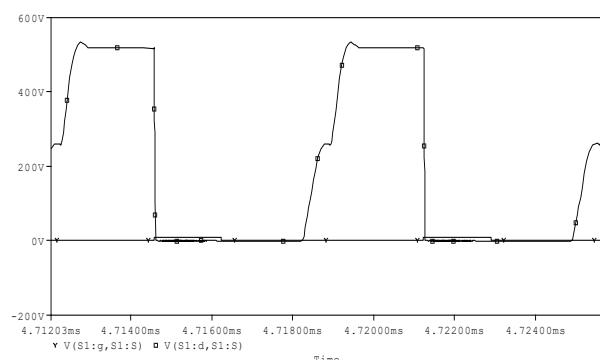
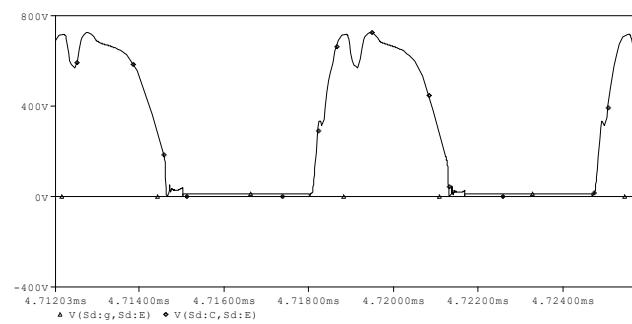





Fig :12 Triggering pulses for switches S, S1, Sd

Fig :13 V_{ds} and V_{gs}Fig: 14 V_{gs1} and V_{ds1}Fig: 15 V_{gs} and V_{ds}

VI. CONCLUSION

A new PFC boost converter with an integrated stand-by fly-back converter that can achieve soft-switching of all semiconductor devices in the power stages has been introduced. By using a single magnetic device which is mutually shared by the PFC boost converter and the stand-by fly back converter, boost switch S and flyback switch Sd are turned on with ZVS, auxillary switch S1 is turned off with ZCS, and boost diode D is turned off softly using a controlled di/dt rate. As a result, the turn-on switching losses in the boost and flyback switches, the turn-off switching loss in the auxillary switch, and reverse recovery-related losses in the boost diode are eliminated, which maximizes the conversion efficiency. The performance of the proposed converter was verified on a 150-khz, 450-W prototype circuit that was designed to operate from a universal ac-line input. The PFC boost converter and the stand-by fly back converter of the prototype circuit deliver upto 1.2 A at a 380-V output and 2.2A at a 12-V output, respectively. The proposed technique improves the efficiency by approximately 5% at 450 W

REFERENCES

1. R.Streit and Tollik. "High efficiency telecim rectifier using a novel soft-switched boost-based input current
2. G.Hua, c.sue and f.c.lee- " novel zero-voltage-transmission PWM Converters." In proc. I EEE power electronics specialties.'conf. (PESC), june 1992,pp.55-61.
3. D.C.Martins, F.J.M.de Seixas.J.Abrilhante, and I. Barbi "A family of de-to-de PWM converters using a new ZVS Communication cell." In proc. IEEE power Electronics Specialist'conf (PESC), Jan 1993 pp.524-530.
4. J.p.Gegener and c.Q.Lee " Zero-voltage transition converter using a simple magnetic feedback and technique in proc.IEEE Applied Power electronics (APEC) conf., 1994,pp.590-596
5. www.Powerdesigners.Com
6. www.Powerelectronics.com

AUTHOR PROFILE

Mr.S.KAMALSAKTHI was born on 8-11-1990 in Panruti, Tamilnadu, India. He obtained his bachelor degree from IFET college of engineering. At present he is pursuing his master degree in the field of power electronics and drives.

J. Baskaran was born in 1976 in Tamilnadu, India. He received his B.E degree from Madras University, Chennai in 1997 and M.E Degree from Annamalai University, Chidambaram in 2006 and PhD from Anna University, Chennai in 2010. He has 14 years teaching and 4 years research experience. Now he is working as a professor and Head of EEE department in Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu, India. His research area of interest includes power electronics, optimization control in power system, FACTS, Distributed power system.