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Abstract: System failures are identified and quantified by
modeling artificial intelligent systems using the required process
parameters that cause the failure. In this paper, an artificial
neural network (ANN) model has been implemented for detection
of various events in Prototype Fast Breeder Reactor (PFBR).
Using the conventional, in-house developed thermal-hydraulics
model of PFBR operator training simulator, input data has been
generated to train the ANN model for various events associated
with PFBR subsystems. The subsystems considered here are
Primary Sodium Circuit and Neutronics system of PFBR.
Operators have to take immediate actions in order to tackle the
unsought occurrence of events due to mechanical and electrical
failures, thereby ensuring the safe operations of the power plant.
In those scenarios, neural network serves as a useful tool in
identifying the events at the early stage of their occurrence. The
artificial neural network (ANN) models developed here are able to
identify the events quickly as compared to the conventional
methods. Various learning algorithms based on back propagation
network has been successfully applied to the neural network
model and the network has been fine tuned towards detecting the
events accurately. The resilient back propagation algorithm shows
better results compared to other variants.

Index Terms: Nuclear Power Plant, Event Detection, Prototype
Fast Breeder Reactor, Neural Network, Back Propagation
Network.

I. INTRODUCTION

Nuclear power plants are highly complex, safety critical
systems being operated by human operators in which safe and
reliable operation is of prime importance. In nuclear reactor
thousands of alarm generate within seconds of time if any
parameter crosses its threshold limit leading to any abnormal
situations. The operators might get perplexed by seeing a lot
of alarms, hence may fail to act immediately in order to
mitigate the negative consequences of such events [1]. Hence
the operators need to take proper and timely action in order to
avoid plant accidents in case of any upset in plant systems.
The problem can be solved by using artificial intelligence
techniques and neural network is one of the advanced
techniques widely used for detecting transient dynamics and
monitoring and diagnosing the plant characteristics. A brief
study of neural network applications in transient diagnosis is
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given by Uhrig et al. [1] for enhancing the operational safety.
For reactor operation and fault diagnosis, an operator support
system and knowledge based system has been developed by
Varde et al. [2]. Neural network and wavelet transform is
being used for fault diagnosis and classification by Kamal H.
et al. [3]. Recurrent neural network is trained for
identification of anomalous events in a Pressurized Water
Reactor 900 Megawatt Nuclear Power Plant (NPP) by
Davide Roverso [4]. A dynamic neural network aggregation
model is developed for transient detection, classification and
prediction in NPP by Kun Mo et al. [5]. For identification of
accident scenario in nuclear research reactor a diagnostic
system based on neural network and expert system is being
used by Santosh et al. [6]. Probabilistic ANN is modeled for
identification of unlabelled transient in NPP by Mark J. E. et
al. [7]. Fault detection and diagnosis has been carried out by
Sorsa et al [8]. A symptom based diagnostic system for
nuclear power plant is developed using artificial neural
network by Santosh et al. [9]. ANN based system
identification and control of nuclear power plant has been
performed by Parlos et al. [10].

The event identification in a NPP can be detected by two
approaches, model based and data driven approach. The
model based approach incorporates physical models which
detect the fault by checking the consistency between the
observed behavior and the predicted behavior through the
model [11]. A data driven model uses operational data in
normal and transient conditions for fault diagnosis and
detection [12]. It has the ability to model non-linear systems
without using the physical expressions that exist among their
variables and without understanding intricacies of the system
characteristics [13]. The main objective of this paper is to
develop an Event Detection System (EDS) for identifying
various events in fast breeder reactor subsystems at the
earliest time of occurrence. The EDS is based on data driven,
single neural network model that helps the operator in
detecting the events much faster and accurate as compared to
the conventional thermo hydraulics methods. A whole set of
data ranging from normal state of operation to transient states
has been obtained with the help of thermal hydraulics
simulation code. The conventional model used here is
DYANA-P (dynamic analysis-P) method that is based on
rigorous thermo hydraulics calculations. The data used as
input to train the model has already been validated and
recorded in event analysis report of Prototype Fast Breeder
Reactor. Standard back propagation learning algorithm and
its variants have been applied and tested to arrive at the best
suited algorithm.
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I1. ABRIEF DESCRIPTION OF PROTOTYPE FAST
BREEDER REACTOR

Prototype Fast Breeder Reactor (PFBR) is a 500 MWe
(Megawatt Electrical), Plutonium and Uranium mixed oxide
(PuOzand UOy) fuel, sodium cooled, pool type reactor. PFBR
simulator is a full scope replica type simulator which covers
the entire plant. The heat transport system of PFBR consists
of Primary Sodium Circuit, Secondary Sodium Circuit and
Steam Water System. The Primary Sodium Circuit,
considered in this event analysis study, is contained inside the
main vessel of the reactor. It consists of two primary sodium
pumps and four Intermediate Heat Exchangers (IHX).
Neutronics model is an important subsystem of PFBR
simulator which simulates the neutron flux monitoring
system of the actual reactor.

I1l. DESCRIPTION OF EVENTS

Events are the unsought occurrence of plant conditions which
affect the safe operation of plant. The event associated with
Neutronics System is Control and Safety Rod (CSR)
withdrawal. The events associated with Primary Sodium
Circuit are Primary Pipe Rupture, Primary Sodium Pump
Trip and Primary Pump Seizure.

In case of the one Control And Safety Rod (CSR) withdrawal
event, the positive reactivity is added continuously to the
system which in turn will result in SCRAM (Safety Control
Rod Accelerated Movement) i.e., dropping of rods to
shutdown the reactor. It has been simulated by considering
that one CSR moves upward from its initial location at a
speed of 2 mm/s. The reactivity insertion rate during this
transient has been calculated based on the speed of movement
of CSR and reactivity worth data of CSR corresponding to its
position inside the core at that instant. Because of the
insertion of external reactivity, reactor power increases and
corresponding coolant temperature also increases. When the
reactivity crosses the trip threshold of +10 pcm at 3.47 s
SCRAM s initiated. Apart from reactivity (p) the other
effective SCRAM parameters available during this event are
high linear power (Lin P), central subassembly outlet

temperature ( 6 csav), increase in central subassembly

temperature rise (AOcsA), power to flow ratio (P/Q) Among

the various parameters, p and @ csawm are the first SCRAM
parameters that trigger reactor to SCRAM independently by
SDS 1 and SDS 2 respectively.

In case of primary pipe rupture event, primary sodium flow
by-passes the core back to the cold pool through the break
and the core flow decreases rapidly. It can be seen that the
core flow goes to as low as 30 % at about 0.6 s before
stabilizing at 32 %. The rapid reduction in the flow through
the core results in the sodium and core temperatures to rise.
Four parameters viz. P/Q, Ocsam, p and ABcsam parameters
are available as effective SCRAM parameters during the
event. The evolution of process values of flow and
temperature related SCRAM parameters for both the events
are shown in figure 1.

Retrieval Number: F0932012614/14©BEIESP
Journal Website: WWw.ijrte.org

106 and Sciences Publication (BEIESP)

140 50
o PIQ
130
O~ Bcsam [ 20
120 -6 ABcsam
ooooooooooooooo

30

F 20

Speed or PIQ, %
B
=]
o
Temperature above nominal, K

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

10
0935
70 /
60 / o
o 0.5 1 1.5 2
Time, s
140 50
-~ LinP
130
=Pl
Q 40
120 g eCSAM
O ABesau
Threshold for PIQ and LinP et
110

30

LinP or P/Q, %
=
5]
S

20

©
o

Temperature above nominal, K

\

Threshold for temperature parameters

10

~
o
&

60 T T T T T T T T T 0
0 1 2 3 4 5 6 7 8 9 10

Time, s

Fig. 1 Evolution of process values of temperature and
power related SCRAM parameter during (a) Primary
pipe rupture and (b) one CSR withdrawal

When one Primary Sodium Pump (PSP) trip occurs, the
speed of the tripped PSP flow reduces gradually against
inertia to 50% in 2.6s and to 0% in 9.4s. Due to parallel
operation of two PSPs the operating PSP flow increases to
126% in order to balance the core flow. The total core flow
reduces to 61% in 10s. Hence the power to flow ratio (P/Q)
increases and then the central subassembly outlet temperature

(Bcsa) increases which leads to increase in central
subassembly temperature rise (AOcsA) and mean core

temperature rise (AOMm). Out of a set of SCRAM parameters
five effective SCRAM parameters viz. Np (Pump speed),
P/Q, Bcsa, ABcsa and AOM are used for protection of this

event. Figure 2 depicts the evolution of process values for
SCRAM parameters for PSP trip and seizure event [14].
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Fig. 2 Evolution of process values of temperature and
power related SCRAM parameter during (a) PSP trip
and (b) PSP seizure
When a PSP Seizure occurs there is a ramp reduction of the
speed of one pump to zero in one second. The second pump is
considered to be continuing to operate at full speed. The
operating PSP flow increases to 125% and the core flow
reduces to 37% in 1.7s. With decrease in flow in such a fast
rate the sodium temperature increases very rapidly. Out of
several number of SCRAM parameters six effective
parameters viz. NP, P/Q, 6CSAM, @ p (reactivity), AOCSAM,

and 6M parameters are available during the event.

0

IV. NEURAL NETWORK MODELING

The event identification can be classified as pattern
recognition problem. An event follows a time dependent
pattern and each pattern is unique for a particular type of
event. ANN is one of the non linear pattern recognition
techniques that can be used for transient identification [1].
ANNSs are massively parallel and interconnected adaptive
networks of simple processing elements called neurons
which are intended to abstract and model some characteristic
and functionality of human brain. Connection links are
associated with weights which are multiplied with the neuron
inputs. The activation function is then applied to the net sum
(weight multiplied with input) to get outputs [15]. The ANNSs
are well known for their properties like generalization, fault
tolerance, robustness, function approximation, regression,
pattern classification, optimization and many more [16].

A neural network can be viewed as weighted directed graphs
in which neurons can be connected in either feed forward or
feedback networks. In feed forward network, the architecture
has no loops, whereas in feedback network loops occur
because of feedback connections. In a three layer feed
forward perceptron, the network is consisting of input layer,
hidden layer and output layer. The signals are fed to the input
layer and then it passes to the output layer through hidden
layer.

V. DATA COLLECTION AND TRAINING
ALGORITHMS

The event related input data has been generated from
in-house developed thermal hydraulics code and validated as
per the event analysis reports of PFBR. The input dataset
containing 172 samples has been chosen in such a way that it
covers the entire range of operations from steady state to
transient conditions. The significant parameters namely
reactivity (p), linear power (Lin P), central subassembly
outlet temperature (& csawm), increase in central subassembly
temperature rise (ABCSA), mean core temperature rise (
ABM), power to flow ratio (P/Q), pump speed (Np) are used
to represent input nodes to the neural network. The nominal
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and threshold limits of parameter values associated with the

events are shown in table 1. The neural network designed for

EDS is feed forward network with multilayer perceptron

architecture. The network has seven input nodes in input

layer, four output nodes in output layer and one hidden layer

in which hidden nodes can be varied.

Tablel: Nominal and Threshold values for SCRAM

parameters

107

SCRAM parameters Nominal Value

Threshold

P/Q 11 0.99

Np 590 rpm -5% of
nominal value

Ocsam 853 K +10K of
nominal value

ABcsam 423K +10K of
nominal value

ABM 433K +10K of
nominal value

Reactivity 1.2 pcm 10 pcm
LinP 1250 MWt +10% of

nominal value

The four output nodes in the ANN designate four different
events namely PSP trip, CSR withdrawal, PSP seizure and
primary pipe rupture respectively. The figure 3 depicts the
three layer neural network architecture used for identifying
the four events.

& Network Diagram Q@El

Network Architechture (Resilient)

Input Hidden Output
Layer Layer-1 Layer
- Modes-3 Modes-4

Print Close Train

Fig. 3 Architecture of Neural Network

BIKAS (Bhabha Atomic Research Centre — Indian Institute
of Technology Kanpur-Artificial Neural Networks -
Simulator) is a general purpose neural network simulator
written in JAVA. BIKAS has been used for training the
network with various back propagation learning algorithms
with different weight optimization schemes. The datasets are
normalized using the simulator in order to scale down the
entire range of data into 0.1-0.9 before training. Different
weight optimization algorithms namely Standard Back
Propagation, Back Propagation with momentum in pattern
mode, Back Propagation with momentum in batch mode,
Quick propagation and Resilient back propagation have been
applied and results are analyzed. A brief explanation of each
of the algorithms is given below.
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A. Standard Back Propagation (Bp) Algorithm with
Pattern Mode

In standard back propagation algorithm, the inputs are
applied to the input layer of the network. The random weights
are then applied to the connection links between input layer
and hidden layer neurons. The weights are in turn multiplied
with the inputs and the summed up result is then applied with
an activation function to calculate the output for hidden layer.
The activation function used here is sigmoid activation which
can be represented by equation 1. Sigmoid activation
function is preferred as with sigmoid units, a small change in
weight produces a change in output which is the main criteria
of back propagation algorithm.

_r a
1+ exp(—x) B

Where X is the summed up result of the weight multiplied
with inputs. The outputs of the output layer are also
calculated similarly. The weight update is performed by back
propagating the mean square error which is represented in

equation 2.
TSN NON

L3 T (-0

t=1 k=1

Mean Square Error=

)
Where TSN represents the number of training samples,

NON represents the number of output nodes, doutand O
represents desired and actual outputs.

In standard back propagation algorithm with pattern mode
the weights are updated after each input pattern is applied
[18].

B. BP Algorithm with Momentum and Pattern Mode

In case of back propagation algorithm with pattern mode and
momentum, the momentum factor is used in order to improve
the local minima problem. This method takes the error
estimate from the result in presenting just the current pattern.
It introduces noise into the learning process and it is known
that an accurate calculation of the error gradient is possible
only when all training patterns have been presented. The
momentum term also avoids the oscillations of the error
curve. After various trials and fine tuning, the momentum
value found here is 0.8.

C. BP Algorithm with Momentum and Batch Mode

Back propagation algorithm with momentum and batch mode
learning explains that the weight update is done after the
entire training set is applied to the input layer. It takes the
total training error over all the patterns into account. The
momentum speeds up convergence of training a feed-forward
neural network.

D. Quick Propagation Algorithm

The quick propagation algorithm requires the computation of
the second order derivatives of the error function. It assumes
the error to be locally quadratic and attempts to jump in one
step from the current position directly in to the minimum of
the parabola. The weight update formula is represented in
equation 3.
AW(t) = O Aw(t-1) (3)
s(t—1)—s(t)

Retrieval Number: F0932012614/14©BEIESP
Journal Website: WWw.ijrte.org

108 and Sciences Publication (BEIESP)

Where S(t) and S(t—1) are the current and previous
values of the error gradient vector 6E/ow, Aw(t) is the

weight change and AW(t —1) is weight change in previous
step.

E. Resilient Back Propagation Algorithm

The resilient back propagation algorithm the direction of
each weight update is based on the sign of the partial
derivative of oE /ow; . A step size A; i.e., the update amount
of weightw,, is adapted for each weight individually. The
main difference to other techniques is that the step sizes are
independent of the absolute value of the partial derivatives.
The weight formula is shown is equation 4 and 5[17].

n+*Ait-1) i E(t) *E(t -1)>0
, ;

a\Nl
Aij(t) =37 —*Ai(t-1) BE] o 4
. if —(t)*—(t-1)<0
Aij (t _1) OWij OWij
otherwise

Where Alj represents the new update value that solely

determines the weight-update.
GE/ow,(t) » OE/ows(t—1) are partial derivative of error for

current and previous steps. Once the update value for each
weight is adapted, the weight update can be represented as
follows.

— Aii(t) it %(I) >0
AW (1) =<+ Aii(t) 6E“ ®)
if —(t)<O0
0 OWij
else

Where AWij (t) determines the change in weight parameter.

In case of resilient back propagation algorithm the partial
derivative is not used directly for weight optimization. It only
indicates the direction of weight update. 77 * represents the

learning rate increment factor and 77 “represents the learning

rate decrement factor and the value of two learning rate
factors are 1.2 and 0.5 respectively, found experimentally
from previous literatures. The initial weight update value is
represented as A o and the lower and upper bounds are
represented as A max and A min. The value of A is 0.07, A
max 15 50 and A min is 0.001[17].

VI. DATA COLLECTION AND TRAINING
ALGORITHMS

Out of 172 datasets in input dataset, 152 datasets have been
chosen for training and testing. 20 distinct datasets which are
not included in the training set are used for prediction. The
performance goal error value is set in the order of 1.0 E-04 as
beyond this there is no much variation in the mean square
value. The learning rate factor used in weight optimization
formula is standardized based on the experience gained from
our earlier ANN simulation work and set as 0.7. The figure 4
depicts the graph between mean square error and number of
hidden nodes. The optimal number of hidden nodes is found
to be 8 after carrying out trials with various hidden nodes
starting from 5 to 12 for 1000 epochs [18]. After optimizing
the key parameters, the network is trained with different
variants of back propagation algorithms to find out the
suitable model which produces
optimal results.
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The figure 5 depicts the graph for standard back propagation
algorithm with pattern mode learning. The error value starts
with 0.0057. After ten thousand iterations the error reduces
up to 7.47 E-04.1t took 30 minutes to run BIKAS simulator
program for ten thousand iterations in (2.66 GHz Intel Core 2
Duo processor).

EZ Error-lteration plot  Semi-Log Plot
Start Error : 0.057148909842672166

Error : T.4718326T4164262E-4

oo

b

Error

5.0 100
tterations w10®

Error( Sumn_Square_Error )Vs Iteration

Training In Progress

Close

Fig. 5 Error vs. Epoch curve for Standard BP algorithm
(pattern mode)

The figure 6 indicates the back propagation algorithm with
pattern mode learning and momentum parameter. The
performance goal error value starts with 0.057. It shows that
the mean square error reduces to 9.14 E-04 after ten thousand
iterations.

EH Error-heration plot  Semi-Log Plot

Start Error : 0.05710839925927331 Error : 9.147584342710011E-4

Error

100

50 :
tterafions 103

Error({ Sum_Square_Error )\fs lteration

Fig. 6 Error vs. Epoch curve for Standard BP algorithm
(pattern mode with momentum)

Training In Progress

The figure 7 shows the standard BP algorithm with batch
mode learning with momentum parameter. The performance
goal error value starts with 0.060 and after ten thousand
iterations the error factor reduces to 0.0059.

B3 Error-lteration plot  Semi-Log Plot

Start Error : 0.060443944010388724 Error : 0.005948029908031397

Ermor

50
Iterations 10

Error({ Sum_Square_Error /s lteration

Training In Progress

Fig. 7 Error vs. Epoch curve for Standard BP algorithm (batch
mode with momentum)
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The figure 8 shows the graph for quick propagation
algorithm. The performance goal error value starts with 0.070
and after ten thousand iterations the error factor reduces to
4.86 E-04.

EH Error-lteration plot  Semi-Log Plot
Start Errar : 0.00051049110775593
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Fig. 8 Error vs. Epoch curve for Quick Propagation algorithm

The figure 9 depicts the mean square error versus epoch’s
graph of resilient back propagation algorithm. The
performance goal error value starts with 0.080. For ten
thousand iterations the mean square error reduces 4.29 E-04.
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Fig. 9 Error vs. Epoch curve for Resilient Algorithm
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VII. RESULTS AND DISCUSSION

Multilayer feed forward ANN model has been implemented
and trained with BP algorithm and its variants to identify
events related to PFBR subsystems. The best performing
algorithm has been found out during the training process.
From the figure 10 shown below, it can be seen that the
resilient back propagation algorithm is showing faster
convergence and yields satisfactory results. The graph also
shows that the back propagation algorithm with batch mode
and momentum parameter is not able to converge to the
required performance goal error even after ten thousand
epochs. After training, testing has been carried out for
resilient back propagation model with 25 test cases within the
range of input data set. The testing results are shown in figure
11. It shows the neural network results are almost matching
with the desired outputs and the resilient back propagation
algorithm gives the least mean square error.

0.0059 '

0.006 |-
[[No. of epochs=10000 ||

Mean Square Error

© o0 0o o0

0 0 0 0 ©0

O 0O 0o O O

= N W & o
T

9.14 E-04

- 7.47 E-04

0.000
1 2

Back Propagation algorithrns|

Fig10 Mean square error for five different algorithms for
10000 epoch
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Table | The desired and actual output test results of 25 samples

Actual Outputs

Desired Outputs

1 2 3 4 5 6 7 8
1.0585 -0.103 -0.0136 -0.1036 1 0 0 0
0.9827 0.0784 0.0503 -0.0401 1 0 0 0
0.9735 0.0169 0.0091 0.0665 1 0 0 0
0.9961 0.0012 -0.0055 -0.0091 1 0 0 0
0.9901 -5.95E-04 -0.001 -0.0157 1 0 0 0
0.9901 -0.002 -6.82E-05 -0.0186 1 0 0 0
-0.0094 1.0179 -0.1249 0.0155 0 1 0 0
-0.0224 1.0414 -0.1249 0.017 0 1 0 0
-0.022 1.0549 -0.1249 0.015 0 1 0 0
-0.0149 1.0631 -0.1249 0.0124 0 1 0 0
-0.1048 -0.1247 1.1235 -0.0924 0 0 1 0
-0.1171 -0.1247 1.1239 -0.1103 0 0 1 0
-0.1209 -0.1246 1.1243 -0.1169 0 0 1 0
-0.1225 -0.123 1.1229 -0.116 0 0 1 0
-0.1147 -0.1199 1.1173 -0.1145 0 0 1 0
0.0014 -0.0119 0.9544 0.044 0 0 1 0
0.0017 -0.011 0.9733 0.0257 0 0 1 0
0.0027 -0.0098 0.9877 0.011 0 0 1 0
0.0098 -0.0072 0.9863 0.0082 0 0 1 0
-0.1249 0.0106 -0.118 1.1214 0 0 0 1
0.0169 0.0111 0.0363 0.9837 0 0 0 1
0.0184 0.0062 0.0345 0.9757 0 0 0 1
0.0196 0.0026 0.0235 0.9789 0 0 0 1

0.02 -0.0013 0.0134 0.9819 0 0 0 1
0.0198 -0.0058 0.0043 0.9845 0 0 0 1
30 ‘ [[Event 2[[Event 3|[Event 4]

[Event 1] | [Event 3 || | 201
25+ i 15f
9 4
m2.0— E,mo. .----sanii:.-:--‘---—-
2 J & BN |
:>: 15} - 05} 1
10} Bggesaibiinnnnipyyyannnns oot
| 0 5 0 15 20
05F 20 Prediction Samples
. . | . ) ‘ Fig. 12 Prediction results for various events showing
0 5 10 15 20 25 simulator and neural network outputs

25 Test Samples

Fig. 11 Neural Network results for testing samples showing
simulator and neural network output

During validation phase after testing, twenty distinct samples
which are not used in training set are applied to the resilient
back propagation model for prediction. The prediction results
shown in figure 12 are in excellent agreement with the
validated results of conventional model. It shows that the
occurrence of events can be identified with negligible error
using the neural network model.

Retrieval Number: F0932012614/14©BEIESP
Journal Website: WWW.ijrte.org

110 and Sciences Publication (BEIESP)

IX. CONCLUSION

The neural network model has been developed for
identification of events in Primary Sodium Circuit and
Neutronics Subsystem of PFBR. Multilayer perceptron
architecture has been used with various back propagation
learning algorithms. Different weight optimization
algorithms namely standard BP, BP with momentum in
pattern mode, BP with momentum in batch mode, Quick
propagation and Resilient BP have been applied successfully
for training the model and the results are analyzed to
determine the best suited learning algorithm. In comparison
with the conventional methods, the ANN methodologies are
found to be fast in achieving the results.
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Based on the above case studies, it can also be concluded that
the quick propagation and resilient back propagation
algorithms give least error margins. Out of the two, resilient
back propagation algorithm gives better estimation and faster
convergence for this case of event detection. The results
show that the neural network model can be applied to the
plant operations as an event detection system to help the
operators in identifying anomalies and taking timely
decisions.
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