
International Journal of Recent Technology and Engineering (IJRTE)  

ISSN: 2277-3878 (Online), Volume-2 Issue-5, November 2013 

55 

 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved 

Retrieval Number: E0872112513/13©BEIESP 

Journal Website: www.ijrte.org 

 

  

Abstract— In this paper a simple spreadsheet program method 

of calculations for the complete kinematics, kinetostatics, and 

dynamic analysis of the inline and offset types of the 

crank-and-connecting-rod mechanism is presented. Being a 

single degree-of-freedom mechanism as defined by its crank 

angle, the program can be used to answer “what-if” scenario 

questions through tables and graphical plots to evaluate variations 

of key motion and loading parameters with changes in the crank 

angle. The program also allows for the conduct of parameter 

studies in selecting optimum crank-and-connecting-rod linkage 

dimensions and speeds. Extreme positions are accounted for in the 

inline model using the Ching-U and Price model equations. An 

equation derived for the offset model, estimates and predicts 

relative crank angle position, and relative extremum maximum 

velocity, to within 93-to-96 % of actual absolute extremum 

maximum piston velocity guided by applications of the  extreme 

value principle. 

 

Index Terms—Crank-and-Connecting-Rod Mechanism, Inline 

Slider-Crank, Inverse Dynamics, Kinematics of Mechanisms, 

Kinetostatics, Mechanisms, Mechanism Synthesis, Offset 

Slider-Crank, Slider-Crank Mechanism. 

I. INTRODUCTION 

  Computer programs (visual and non-visual Graphics 

packages) for integrated Mechanisms analysis have been 

reported in the literature; the programs are mostly written in 

FORTRAN and the BASIC languages and used for 

kinematics, kinetostatic and Dynamics analysis of two- and 

three-dimensional rigid link mechanisms [1]-[9]. Kinetostatic 

analysis or inverse dynamics, allows for the computation of 

the bearing reaction forces, and the required shaft input 

torque at a particular instant position of the crank angle [9]. 

Kaplan and Pollick [10], presented a tabulating scheme for 

kinematics analysis of a four-bar linkage. The program 

method of analytical solution presented in this article follows 

the tabulation approach with the added advantage of the clear 

input/output formatting and presentation, provided by the 

Microsoft Excel TM spreadsheet environment. Bearing 

Friction and the concept of friction circle is not accounted for 

in this program model. 
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II. REQUIRED KINEMATICS EQUATIONS 

The basic model of an inline crank-and-connecting rod 

mechanism is shown in Fig. (1). Shown in Fig. (2), is the 

offset crank model type of mechanism.  

The mathematical relations for the analysis of these 

mechanism types are derived from these basic geometries. 

Some of the derivations of these equations are available in the 

open literature. Complete step-by-step analytical derivations 

of the kinematics, kinetostatic and dynamic analysis 

equations of the inline model are given in [11], [7]. Khurmi 

[5], assuming negative connecting rod angle, derived 

mathematical relationships for the displacement, velocity, 

and acceleration for the offset model. Freudenstein and 

Sandor [6] presented a set of equations for the offset model, 

which adopted a positive connecting rod angle. Doughty [8], 

using a different approach with generalized coordinates and 

velocity coefficients also derived mathematical relations for 

the offset type mechanism. For the program discussed in this 

article, the offset type model equations of [5] are applied. 

A. Design Factors 

The design factor, fd, defines the geometric link between the 

crankshaft and connecting rod, and is obtained by the 

trigonometric analysis of the crank-and-connecting rod 

linkage mechanism triangular geometry. This is obtained as 

(1): 

 

 rSinLSinfd ==              

 (1) 

 

Equation (1) defines the important design parameter ratio of 

connecting rod length, L, to the crank radius, r, and obtained 

as (2):
r

L
 Ratio: 





Sin

Sin

r

L
=                  

 (2) 

The importance of the (L/r) ratio for the inline mechanism 

model is its usefulness in defining the crank motion type in 

terms of the reciprocal value, i.e. (r/L) ratio:  

For (r/L) < 1, crank motion is rotating; for (r/L) >1 crank 

motion is oscillatory [6]. 
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B. Stroke Length 

Inline: rSt 2=                 (2a) 

For the offset stroke length, [6], [7] provide the following: 

Offset: ( ) ( ) 2222
erLerLS t −−−++=    (2b) 

 
 

C. Connecting Rod Angle 

In Fig. (1), the connecting rod angle, β, for the inline model 

is obtained from (1) as: 

 

( )  Sin
L

rSin 1−=              

 (3) 

 

The connecting rod angle for the offset type model of fig. (2) 

is as in (3a): 

 








 −
= −

L

re
Sin




sin1
         (3a) 

 

Wilson, Sadler and Michels [7], set the limiting conditions 

for the (L/r) ratio in design solution and analysis, applicable 

to the inline model as: 

For Exact condition: 3
r

L
;  

And, for Approximate condition: 3
r

L
.  

Others report different limiting conditions [12]-[13]. Khurmi, 

[5] makes no such distinction in the application of the 

kinematics relationships for the offset model. 

D. Piston Displacement: Inline Model 

The conversion of the rotary angular displacement of the 

crankshaft, to the translational linear displacement of the 

piston between the bottom dead centre and the top dead 

centre is defined by the piston displacement relations, (4) or  

(4a) for the inline model. This is based on a position analysis 

of the crank-and-connecting rod mechanism when viewed 

from the full extended position. Depending on the (L/r) ratio, 

the following relations apply: 

For − :3
r

L
 

      ( )


















 −−+−=−+−=

2

1

2
2

11111  Sin
L

rLCosrCosrCosLs

                      

 (4) 

For − :3
r

L
 

 

  ( )( )( )   21
4

11 Cos
L

rCosrs −+−=     (4a) 

 

Equation (4a) is an approximate relationship and obtained 

from the Taylor series expansion of the last radical term in 

enveloped bracket of (4) [11]. 

E. Piston Displacement: Offset Model 

Based on the formulations of [5], the offset model piston 

displacement is obtained from a solution of the quadratic, 

(4b): 

 

21

2 ksks ++                  (4b) 

 

Where, 

 

cos21 rk −=                 (4c) 

 

And 

  

sin2222

2 ereLrk −+−=          (4d) 
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Fig. 1: Basic Inline Model Crank-and-Connecting-Rod 

Mechanism (i); inset: velocity triangle (ii) and acceleration 

polygon (iii) 

Fig. (2): Basic Offset Model Crank-and-connecting rod 

Mechanism 
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F. Piston Velocity: Inline Model 

The corresponding piston velocity obtained from the first 

derivative of piston displacement with respect to time is: 

For 

− :3
r

L
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rSin
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v

      (5) 

 

For − :3
r

L
 

 

( )  Cos
L

rrSinv += 1           (5a) 

 

Again, the simplified (5a) is obtained from the Taylor series 

expansion of the binomial form of the denominator of the 

square root term in (5). 

 

G. Piston Velocity: Offset Model 

Based on [5],  

 





Cos

Sinr
v

)( −
=               (5b) 

H.  Crank Pin Velocity and Relative Velocity of Piston to 

Crank Pin 

Analysis of the inset velocity triangle in Fig. 1 (ii), by the 

sine rule for triangles based on the direction of motion results 

in the relationship: 

 

( ) ( ) ( ) −
=

−
=

+ 9090 Sin

V

Sin

V

Sin

V ABBA     

 (6) 

 

The crank pin velocity, VB, is also obtainable from (6a): 

 

rVB =                   (6a) 

 

I. Angular Velocity of the Connecting Rod: Inline Model 

 

L

VAB
AB =                  

 (7) 

 

J. Angular Velocity of the Connecting Rod: Offset Model 

Again, based on derivation of [5], 

 






LCos

Cosr
AB

−
=               (7a) 

K. Piston Acceleration: Inline Model 

 

The piston acceleration is obtained from the second 

derivative of the displacement with respect to time. 

For − :3
r
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                      (8) 

For − :3
r

L
 

( )  22 Cos
L

rCosrap +=         (8a) 

 

L. Piston Acceleration: Offset Model 

This is given by [5] as in (8b), 

  

( ) ( )




Cos

LCosrSinr
a AB

p

22 −−−−
=    (8b) 

 

M. Crank Pin Acceleration:  

The crank pin acceleration is made up of normal and 

tangential components. 

Note that, in the Fig. (1) and Fig. (2), the crank – Link 2 – 

rotates with an angular velocity, ω, and an angular 

acceleration, α. In many instances, the crank rotates at a 

uniform angular velocity [12]. 

 

For constant angular velocity of the crank, the normal 

acceleration component is: 

r

V
r

N
raa B

BnB

22

2

30
=








===


        

 (9) 

If the crank rotates with a constant angular velocity, ω, the 

tangential component of crank pin acceleration, aBt =0. 

If the crank rotates with angular velocity, ω, and an angular 

acceleration, α, the tangential component of crank pin 

acceleration is given as in (9a): 

raBt =                   (9a) 

The resultant crank pin acceleration is then the vector 

addition: 

 

BtBnB jaiaa +=


               (9b) 

 

N. Relative Normal Acceleration of Piston to Crank Pin:  

La ABABn

2=                 (10) 

 

O. Relative Tangential Acceleration of Piston to Crank 

Pin 
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



Sin

anCosmCos
a

p

ABt

−+
=          (11) 

 

Where,  

 

m=aBn, n=aABn                 (11a) 

 

Equation (11) can be deduced from the inset acceleration 

polygon of Fig. (1) (iii). 

P. Angular Acceleration of Connecting Rod: Inline Model  

L

aABt
AB =                  (12) 

 

Q. Angular Acceleration of Connecting Rod: Offset Model  

 

By [5] formulation, 

 

( )





LCos

SinLSinCosr AB
AB

22 −−
=     (12a) 

III. EXTREME POSITIONS: ANALYSING FOR 

CRANK POSITIONS AT MAXIMUM PISTON 

VELOCITY 

A. Crank Angle at Maximum Piston Velocity: Inline 

Model  

Ching-U and Price [14] applied Lin’s successive division 

method to the solution of a characteristic cubic equation of 

the position of maximum piston velocity, derived from the 

exact relationship for piston acceleration, (8), based on the 

fact that, at the point of maximum velocity, the acceleration 

will be zero. This is in line with the maxima-minima theory. 

Equation (13), obtained from the [14] solution can be used to 

compute crank angle position at maximum piston velocity. 

 

For − :3
r

L
 

( ) 2

1
2

3
−





 +=

r
LCos             (13) 

 

Ching-U and Price [14], also give (13a) as the crank angle 

position at maximum piston velocity from a solution of the 

approximate (8a). 

 

For − :3
r

L
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






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2

1
2

5.0
44 r

L

r

L
Cos        (13a) 

B. Estimating and Predicting Crank Angle at Maximum 

Piston Velocity for the Offset Model  

At the point of maximum velocity, the acceleration is zero. 

Equation (8b) then reduces to, (13b): 

 

( ) ( ) 022 =−−−− ABLCosrSinr   

 (13b) 

 

A close observation of the offset model (5b) and (7a) 

relations, show that, maximum piston velocity, Vpmax, and 

maximum angular velocity of the connecting rod, ωAB-max, 

will occur in the first and fourth quadrant of the connecting 

rod angle, at 
2

0


  , and 


2
2

3
 , with 

infinite point at π/2 and 3π/2,  since, (Cos β= Cos π/2 = 

Cos3π/2= 0); and thus, with the finite maximum likely 

occurring just below, β=π/2, i.e., (π/2)-, and/or,  just over 

β=3π/2, i.e., (3π/2)+.  

 

Plots of offset type piston velocity versus crank angle 

indicate the curves are not symmetric, indicating several 

points of maximum, minimum, and inflection curve points. 

This differs from the inline model, wherein the curves are 

antisymmetric, about the crank angle, π, and with clear 

extreme values [7]. This can also be observed in the 

numerical examples in this article. 

 

Setting the value of β = π/2=90 o, (13b) can be re-written as 

in (13c): 

 

( ) ( )

0

9090

22

22

=−−

−−−−

AB

AB

LSinrCosr

LCosrSinr




   (13c) 

 

Or 

 
22

ABLSinrCosr  =−         

 (13d) 

 

Next is to define ωAB at maximum condition. An estimate of 

the point of maximum velocity can be obtained by the 

maxima-minima principle of: given a function, ωAB(θ), in this 

case the angular velocity of the connecting rod, which has a 

local maximum point, a local minimum point, and an 

inflection, by the maxima-minima principal, a stationary 

point, θ, can be obtained by equating the solution of : (1.) first 

derivative to zero, i.e. , 0=




d

d AB ; (2.) also, another 

necessary condition is, the second derivative is less than zero, 

i.e., 0
2

2






d

d AB , [15]. 

Applying the first condition to (13d), a good estimate of the 

offset model type crank angle at maximum velocity is 

predictable within a 4 %-to-7 % error margin with the 

following relation: 






2

tan
−

=                 (13e) 

 

Or 
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






 −
= −






2
1tan               (13f) 

(See appendix) 

 

Since (13f) is a relative extremum crank angle at maximum 

velocity, it can be reasoned that actual crank angle at 

maximum velocity is of the form of, (13g) or (13h): 
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 (13g) 

 

Or 
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2
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 (13h) 

 

Equation (13h) is easier to apply in estimating crank angle 

position. By test inspection, the factor, η, is empirically 

within the limit of 1.04 – 1.07. A figure of 1.055 is good. 

Alternatively, a direct approach can be applied by 

multiplying the relative extremum maximum velocity 

obtained by applying (13f), by the factor, η, to obtain close to 

actual maximum velocity. Using the tables and plots of the 

parameter studies discussed later, further simplifies the 

computation. 

 

By rewriting (13g) in the form of (13i): 

 

111

2
1 360tan 




 qq ++






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



+












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

 −
= −

  (13i) 

 

The factor, q1, is estimated to be within the range, 0.04-0.07. 

Note that factors, q, and, η, are not adjusted for in the 

program. This is left to the judgement of the program user. 

The method applied to estimate the crank angle at maximum 

velocity for the offset model agrees with the Freudenstein 

extreme value theorem, and the follow-up inversion theorem 

for mechanisms, in terms of determining angle phases of a 

linkage in relation to the extremes of velocity ratio [12]. 

Shigley [12], further reports that, Freudenstein advices that in 

the evaluation of a linkage to fulfill a motion position 

coordinate, the linkage be investigated for maximum, 

minimum or a point of inflection. 

In the case for the offset model, the predicted crank angle is 

an estimated position value to give an idea of the location of 

crank angle position at the extreme maximum velocity. Due 

to the nonsymmetric nature of the offset model as seen from 

the velocity plot, with increasing and decreasing, upward 

concavity, and decreasing and increasing, downward 

concavity, clear extremes will need to be by additional trial, 

guided from the estimated. This is an important consideration 

of the Extreme Value Property as defined by [16]-[17]. By 

the Extreme Value Property, “a continuous function within a 

given interval will attain absolute extrema at the end points or 

at a critical point within the interval” [16]-[17]. Note that 

absolute extrema is the collective term for the absolute 

maxima and minima [16].  

The Extreme Value Property thus, provides answers to two 

questions: (1) what happens when a continuous function 

cannot be easily maximized or minimized at the end points? 

(2) What should be done if an absolute extrema does really 

exist in such cases of unbounded intervals? 

Hoffman, Bradley and Rosen [16, 17], provide a useful guide 

with this Quote: 

“When an absolute extremum does exist and a function is 

continuous on an interval, the absolute extremum will still 

occur at a relative extremum or end point contained in the 

interval.” The relative extrema are critical points contained in 

the interval. 

Hoffman, Bradley and Rosen [16, 17], further advice that, to 

find the absolute extrema of a continuous function on an 

interval, an evaluation of all the critical points and end points 

that are contained in the interval is required. Hoffman, 

Bradley and Rosen [16, 17], however, caution that, before 

any final conclusions are drawn, it is important to find out if 

the function actually has relative extreme on the interval. 

Applying the first derivative to determine where the function 

is increasing and where it is decreasing, together with a plot 

sketch is a useful step [16, 17]. 

Equation (13f) thus, predicts the relative extremum, and 

allows for the absolute extremum to be estimated by way of 

(13g) or (13h). 

IV. REQUIRED KINETIC EQUATIONS – TORQUE 

AND POINT MASSES 

A. Static Input Torque of Crankshaft 

( )

( ) 
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2
2

1

1Pr






Sin
L

r

Cos
L

r

SinT      (14) 

 

B. Dynamic Torque of Crankshaft 

 

  cossin 32322 rFrFIT yxG ++−=      (15) 

 

Note that when the mechanism operates at a constant angular 

velocity, the first product term in (15) is zero, since, α=0. 

C. Piston Mass and Dynamic Equivalent Mass Modeling 

Letting the connecting rod mass = m3, and assuming that it is 

a mass-less rigid link being held in its equilibrium position, 

by two point masses, mA and mB at its ends A and B 

respectively, with the centre of mass of the connecting rod at 

G3, - see Fig. (3) - the following three relations, (16), (16a), 

and (16b) can be obtained from equilibrium consideration of 

the Link 3, [18], [7], [11]: 

3m
L

L
m A

B 







=                 (16) 
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3m
L

L
m B

A 







=                 (16a) 

 

3

22

GBBAA ILmLm =+             

 (16b) 

Where, LA and LB are the distances of the gudgeon pin, A, and 

crank pin B, from the centre of mass of connecting rod, G3. 
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Fig. (3): Free body diagram for the kinetostatic and dynamic force 

analysis [11], [7]. 
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Fig. (4): Free body diagram for the static force analysis [11], [7]. 
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V. REQUIRED KINETIC EQUATIONS – FORCE 

ANALYSIS 

In Fig. (3) and Fig. (4), the free-body diagrams for the 

dynamic, kinetostatic, and static force analyses of the 

crank-and-connecting-rod mechanism are shown. Values of 

the forces acting at critical linkage and bearing points can be 

calculated from the following equations below. The 

derivations can be obtained from [11], [7]. 

 

Forces acting on Connecting rod and Crank for static 

equilibrium, 

cos
3432

P
FF ==               (17) 

A. Main Crankshaft Bearing 

X-component of Bearing Reaction Force at the Main 

Crankshaft bearing, F12x = (-F32x),  

 

( ) BxBpAxx amammFF ++=−= 43212       (18) 

 

Where,  
2)cos( raBx −=               (18a) 

Y-component of Bearing Reaction Force at the Main 

Crankshaft bearing, F12y = (-F32y),  

( ) ByBpAyy amammFF −+=−= tan][ 43212  

 (18b) 

Where,  
2)sin( raBy −=               (18c) 

Resultant Bearing Reaction Force at the Main Crankshaft 

bearing, F12,  

 

yx jFiFF 121212 +=
→

             

 (18d) 

B. Crank Pin Bearing 

X-component, Bearing Reaction Force at the Crank Pin, F23x,  

 

( ) BxBpAx amammF ++= 423          (19) 

 

Y-component, Bearing Reaction Force at the Crank Pin, F23y, 

  

( ) ByBpAy amammF −+= tan][ 423       (19a) 

 

Total Bearing Reaction Force at the Crank Pin, F23, 

  

yx jFiFF 232323 +=
→

             

 (19b) 

 

C. Gudgeon Pin Bearing 

 

Horizontal -X-component Bearing Reaction Force at the 

Gudgeon Pin, F43x,  

 

px amF 443 −=                 (20) 

 

Vertical -Y-component Bearing Reaction Force at the 

Gudgeon Pin, F43y,  

 

( ) tan][ 443 pAy ammF +−=          (20a) 

Resultant Bearing Reaction Force at the Gudgeon Pin, F43,  
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yx jFiFF 434343 +=
→

            

 (20b) 

D. Cylinder Frame 

Reaction Force of Cylinder on Piston, F14y,  

( ) tan][ 44314 pAyy ammFF +−==       (21) 

Crank-and-connecting rod model design with crankshaft 

offset from line of axis of the piston, allows for the side thrust 

on the cylinder wall to be minimized during the firing stroke. 

This is known as the ‘desaxe arrangement [13]. 

VI. DYNAMIC FORCE BALANCING 

A. Balance counterweight mass correction- mcrc 

The inertia forces can cause reciprocating machine 

unbalance. A counterweight mounted on the crank, as in Fig. 

(5), is used to reduce the inertia forces produced at the crank, 

and thus, force balance the machine. With a counterweight 

mass, mc, at a radial distance, rc from the main bearing, and at 

an angle (θ+180), [7] suggests balance mass correction 

amounts, should typically, be in the range:  

( ) ( )rmmrmrmm AccA ++ 44
3

2

2

1
.     (22) 

 

The Total shaking force, Fs, is then given by the form of the 

Fs, force vector relation of (23): 

 

( ) ( ) ( )CyCxxs FjFiFiF −−= 12


         (23) 

At the guide frame, mB = 0, and the relation in (18) for F12x in 

(23) is reduced to: 

( ) pAx ammF += 412              (24) 

This being the critical shaking force to be eliminated. 

 

In (24), the inertia force is made up of a primary inertia force,  

that rotates at the crank speed, ω, and a secondary inertia 

force, which rotates at twice the speed of the crankshaft [18], 

[7]. Complete balance is however, not achieved because of 

the -y-component term. The –x-component terms as can be 

seen by (23), is reduced [7]. 

 

In (23), FCx and FCy are respectively, the -x- and -y- 

components of the centrifugal inertia force, ccC rmF 2=  

defined by the relations given in (25) and (25a): 

( ) CosrmF ccCx

2=              (25) 

        

( ) SinrmF ccCy

2=              (25a) 

 

 

 

 

 

 

 

 

IG2, α 

O 

FCx=mcω
2
rcCosθ 

F32x 

F32y 

B 

rc 

mc 

FCy=mcω
2rcSinθ 

FC=mcω
2rc 

(m4+mA)ap 

Balance mass 

Fig. (5): Shaking Force balance mass with counterweight [18], [7] 
 

VII. PARAMETER STUDIES [7] 

The table and plots of the ratio of Piston velocity – to – Crank 

pin velocity, 







=

B

p

V

V
z  versus Crank angle for a 

particular ( )
r

L  ratio, is a useful aid for conducting 

parameters studies in calculating piston velocity at any crank 

position, simply by multiplying the product, ωr, by the ratio, 









=








=

r

V

V

V
z p

B

p , since VB= ωr.  

Again, knowing the 







=

B

p

V

V
z  ratios for a range of crank 

angle positions, (θp1≤θ≤θp2), say, [z1≤z≤z2)], mechanism 

linkage dimensions to fulfill the requirements of certain 

limiting motion conditions, say, (Vp1≤Vp≤Vp2), can be 

obtained by the following crank radius, r1, relation: 


 1

1

1

1

1
z

V

V

V

V
r

p

B

p

p
=









=             (26) 

Note that for this case, Vp1 is minimum piston velocity, and 

Vp2 is maximum piston velocity. 

Having obtained the crank radius, r1, as in (26), next check 

that the maximum velocity, Vp2, falls within the limiting 

range, (Vp1≤Vp≤Vp2), by the simple calculation: 

2

21

z
V

V

r

v

B

p
=








=


 

 

Then, 

( )21

2

1 zr
V

V
rv

B

p
 =








=            (27) 

If the value of, v, obtained in (27) falls within the limiting 

velocity range, (Vp1≤Vp≤Vp2), then it implies that, the speed 

conditions are approximately satisfied within the selected 

crank angle range, (θp1≤θ≤θp2), and, thus, a tentative solution 

for connecting rod length can be obtained from:  
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( )
r

LrL =  

A more accurate computation of the piston velocity then 

follows using the (L/r) ratio, and the actual crank angles, 

θp1≤θ≤θp2). 

Parameters Studies are particularly essential in locating the 

point of crank angle absolute extremum for maximum 

velocity consideration when the method applied in this article 

locates the crank angle at relative extremum and thus, the 

relative extremum maximum velocity for the offset model.  

The 








B

p

V

V
ratios versus crank angle plots have been done 

in the program with crank angle interval spacing of 15o. For a 

better optimized study, smaller interval spacing can be 

adopted. This will also reduce or eliminate the tests for 

locating the absolute extremum of crank angle for maximum 

velocity. 

VIII. PROGRAM DRIVERS 

The program is a single screen, multifunctional, and can be 

used for crank-and-connecting-rod of the inline and offset 

types. Formulae and Microsoft Excel macro functions are 

directly programmed, as in-cell value generators, once 

defined inputs are provided. The following macro formula 

distinguishes between an inline and offset type: 

IF(B3=0,"INLINETYPECRANK-AND-CONNECTING-R

OD MECHANISM-offset=",IF(B3>0,"OFFSET TYPE 

CRANK-AND-CONNECTING-RODMECHANISM-offset(

mm)")) 

Where, cell “B3” is the offset or eccentricity, for which 

inserting, 0, i.e., zero, in cell B3, activates program for inline 

calculations. The reverse also olds for activating program for 

offset model calculations, i.e., B3>0. 

Another program driver is the crank speed, when operating at 

a constant crank speed, and when operating with angular 

velocity and angular acceleration. The macro formula for this 

case is: 

IF(B2=1,"INPUT PARAMETERS when Operating  at 

Constant Crank Speed",IF(B2=2,"INPUT 

PARAMETERS-Operating with angular vel. and ang. 

acceleration")) 

A most important program driver is the (L/r) ratio. As 

observed from close inspection of the piston displacement 

macro formula below, the cell “B16” conditionality is, 

B16<3 which represents the exact relations, and B16>=3, 

which is for the approximate. That is for the inline model. No 

such distinction is made for the offset type, for which the 

program driver remains, the offset, “B3>0”, and “B2=2”, and 

using the [5] offset model piston displacement relation, the 

absolute value of which is programmed in as the Microsoft 

Excel function type: ABS (number) 

 

IF(B3=0,IF(B16<3,((B5*(1-COS((PI()/180)*B20)))+(B4*(1

-COS((PI()/180)*B8)))),IF(B16>=3,((B4)*((1-COS((PI()/18

0)*B8))+((0.25)*((B17)*(1-COS((PI()/180)*2*B8)))))))),IF

(B3>0,ABS((0.5*((2*B4*(COS((PI()/180)*B8)))+((((-2*B4

*(COS((PI()/180)*B8)))^2)-(4*((B4^2)-(B5^2)+(B3^2)-(2*

B3*B4*(SIN((PI()/180)*B8))))))^0.5)))))) 

IX. NUMERICAL EXAMPLES 

A. Numerical Example1: Inline Model – Exact relation- 

ship with (L/r) <3 

Given the following data for a crank and connecting rod 

arrangement: connecting rod length, L=100 mm, crank radius 

= 40 mm, crank angle, θ=45o, constant crank speed, N= 1200 

rpm, Gas Force = 50 N, crank angular acceleration, α = 0 

rad/s2. Piston mass = 0.45 kg, Moment of Inertia of 

crank-end, IG2 = 0.125 N m2 and the connecting rod mass = 

0.25 kg. The ratio of length of the crank pin position from G3, 

to the full length of the connecting rod = 0.55. Dynamic 

balancing of this mechanism will require adding a correction 

weight of mcrc = 0.6 (m4+mA)r. Conduct a detailed analysis to 

determine the displacement, velocity and acceleration of the 

piston, crank pin velocity and acceleration, and the angular 

velocity and acceleration of the connecting rod for this 

constant crank speed and crank position? What are the 

bearing reaction forces at key joints’ sections? Determine the 

static torque and dynamic torque at θ = 45o. Create plots to 

analyse variations of motion and kinetic parameters at 

selected varying crank positions. Neglect Friction. 

 

 

Fig. (6): Excel Program Sheet for Numerical Example 1 

http://www.ijrte.org/


International Journal of Recent Technology and Engineering (IJRTE)  

ISSN: 2277-3878 (Online), Volume-2 Issue-5, November 2013 

63 

 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved 

Retrieval Number: E0872112513/13©BEIESP 

Journal Website: www.ijrte.org 

 

 

Fig. (7): Numerical Example 1 result with structural 

error 

B. Numerical Example 2: Inline Model – Approximate 

relationship with (L/r) ≥3 

Conduct a detailed motion and force analysis of an inline 

crank-and-rod-mechanism given the following data for a 

crank and connecting rod arrangement: connecting rod 

length, L=100 mm, crank radius = 31.25 mm, crank angle, 

θ=45o, constant crank speed, N= 850 rpm, Gas Force = 53.5 

N, crank angular acceleration, α = 0 rad/s2. Piston mass = 0.35 

kg, Moment of Inertia of crank-end, IG2 = 0.125 N m2 and the 

connecting rod mass = 0.16 kg, the ratio of length of the crank 

pin position from G3, to the full length of the connecting rod 

= 0.55. Dynamic balancing of this mechanism will require 

adding a correction weight of mcrc = 0.6 (m4+mA)r. Neglect 

Friction. 

 
Fig. (8): Excel Program Sheet for Numerical Example 

2 

C. Numerical Example 3: Offset Model – Approximate 

relationship with (L/r)≥3 

Conduct a detailed motion and force analysis of the following 

offset type crank-and-connecting rod arrangement: 

Connecting rod length, L=750 mm, crank radius = 200 mm, 

crank angle, θ=30o, crank speed, N= 190.989 rpm, angular 

acceleration, α = 10 rad/s2  

(The above offset model geometry and motion data were 

taken from [5], Example 25.2, pp. 1016, as part of the 

program validation checks) 

 

Gas Force = 53.5 N, Piston mass = 0.35 kg, Moment of 

Inertia of crank-end, IG2 = 0.125 N m2 and the connecting rod 

mass = 0.16 kg. The ratio of length of the crank pin position 

from G3, to the full length of the connecting rod = 0.55. 

Dynamic balancing of this mechanism will require adding a 

correction weight of mcrc = 0.6 (m4+mA)r. Neglect Friction.  
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Fig. (9): Excel Program Sheet for Numerical Example 

3 

X. CONCLUSION 

In conducting a mechanism synthesis or parameter study, a 

structural error may occur. This refers to the inability of a 

mechanism to generate precisely certain function values at 

certain precision points, even though certain function values 

can be generated over a continuous range [7]. In the 

numerical example 1 program results, compare Fig. (6) and 

Fig. (7), and make a note of the crank angles, 0o, 180o, and 

360o; whilst at 0o, a division by zero results in the error, 

#DIV/0!, at 180o and 360o, no such error is recognized and 

displayed by the program. Also the value for crank pin 

velocity, computed with (6) does not near tally with the value 

obtained, using (6a). To avoid such error, the angles 0.1o, 

179.99o, 359.99o, have been selected as the starting, middle 

and end points for the full cycle of the inline model. Though, 

a full cycle program analysis is shown, for the inline model, 

this is not necessary, since the model exhibits symmetry – an 

antisymmetric velocity plot.  The model can thus be 

programmed for the half-cycle-0o-to-180o. Note also that for 

the inline model the (Vp/VB) and (Vp/ωr) versus crank angle 

plots align. The offset model velocity plot in comparison, is 

not symmetric however, and must be analysed for the full 

cycle. Inspection of the results of the numerical example 3 in 

Fig. (9), for the offset model shows that, the crank pin 

velocity, computed with (6) does not tally with result using 

(6a) at several points. This may be because the [5] derived 

offset model assumed a negative connecting rod angle. 

Equation (6) was derived using a positive connecting rod 

angle. Correcting for that by inputting a negative connecting 

rod angle in (6), results in the second numerical example 3 

results displayed in Fig. (10), with equal, but negative VB 

values. The (Vp/VB) and (Vp/ωr) versus crank angle response 

plots are also opposed, as earlier obtained in the Fig. (9) 

results. It is not clear if this may have been as a result of the 

choice of direction of rotation selected in the [5] model. 

 

 
Fig. (10): Numerical Example 3 with adjusted connecting 

rod angle sign 

APPENDIX 

From equation (13d), 

 
22

ABLSinrCosr  =−           (13d) 

 Sin
L

r
Cos

L

r
AB

22 −=       (A1) 

2

1

2









−=  Sin

L

r
Cos

L

r
AB    (A2)   

  

For maximum stationary point condition: 
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( ) ( ) 0
2

1 2

1

2 =







−−=

−





Cos

L

r
Sin

L

r

d

d AB
 

                    (A3) 

Simplifying,  

 

 CosSin 2=−              (A4) 

 

Or 

 








 −
=






2

tan                (A5) 

 

Nomenclature 

ap   Piston acceleration [mm/s2] 

aBn   Normal crank pin acceleration [mm/s2] 

aBt   Tangential crank pin acceleration [mm/s2] 

aABn Relative normal acceleration of piston to crank pin 

[mm/s2] 

aABt   Relative tangential acceleration of piston to crank pin 

[mm/s2] 

e    Offset or Eccentricity [mm] 

fd    Design factor [mm] 

F12  Bearing Reaction Force at the Main Crankshaft 

bearing [N] 

F14y  Reaction Force of Cylinder on Piston [N] 

F23   Bearing Reaction Force at the Crank Pin [N] 

F32   =F34 = Forces acting on Connecting rod and Crank for 

static equilibrium [N] 

F43  Bearing Reaction Force at the Gudgeon Pin [N] 

IG2  Moment of Inertia of Crankshaft, [kg.m2] 

IG3  Moment of Inertia of Connecting rod, [kg.m2] 

L   Connecting rod length [mm] 

m4  Piston mass, [kg] 

m3  Connecting rod mass, [kg] 

mA  Equivalent Connecting rod mass on gudgeon pin at 

piston end, [kg] 

mB  Equivalent Connecting rod mass on Crank pin, [kg] 

mc   Balance mass, [kg] 

rc   Distance of balance mass from main bearing [mm] 

r   Crank radius [mm] 

s   Piston displacement [mm] 

v   Piston velocity = VA [mm/s] 

VB  Crank pin velocity [mm/s] 

VAB  Relative velocity of piston to crank pin [mm/s] 

β   Connecting rod angle [degrees] 

θ    Crank angle [degrees] 

ω   Crank angular velocity [rad/s] 

ωAB  Angular velocity of connecting rod [rad/s] 

α   Crank angular acceleration [rad/s2] 

αAB  Angular acceleration of connecting rod [rad/s2] 

P   Combustion Gas Force on Piston [N] 

St   Stroke length (mm) 

Tinput  Static Input Torque of crankshaft [Nmm] 

Tdynamic Dynamic Torque [Nmm] 
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