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Machine-Learning-Driven 3D Antenna Design
for Energy-Efficient HAPS in Smart Cities

Kholod D Alsufiani, Eman S. Alkhalifah L))

Abstract: The development of smart sustainable cities
increasingly relies on advanced communication infrastructures to
support intelligent transportation systems, energy management,
and data-intensive urban services. The rapid expansion of Internet
of Everything networks has led to rising energy consumption,
posing a critical challenge for sustainable urban development.
This research was conducted to address the need for energy-
efficient, high-performance wireless communication solutions
capable of supporting large-scale, innovative city applications. In
particular, High Altitude Platform Systems have emerged as
promising communication enablers due to their wide coverage and
deployment flexibility; however, their effectiveness is constrained
by the energy efficiency and performance of antenna systems. This
study investigates the application of Machine Learning techniques
for the optimisation of 3D antenna structures to enhance
communication efficiency. The 3D intelligent Microstrip Patch
Multiple Input Multiple Output antenna operating at 28 GHz was
designed and optimised using a Machine Learning-driven
firamework. The antenna design process was carried out using 3D
digital Computer Simulation Technology software, enabling
precise electromagnetic modelling and performance evaluation.
Machine Learning algorithms were employed to systematically
adjust antenna parameters, allowing the identification of optimal
design configurations beyond conventional trial-and-error
methods. The performance of the optimised antenna was evaluated
using Quality of Service parameters for power efficiency and last-
mile connectivity. Comparative analysis with non-optimised
antenna designs demonstrated substantial performance gains. The
results reveal an improvement of up to 31% in power efficiency,
accompanied by enhanced connectivity performance. These
findings indicate that Artificial Intelligence-driven antenna design
is a practical approach to developing sustainable, energy-efficient
communication infrastructure for future, innovative city
environments.
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IoV: Internet of Vehicles

SOA: Swarm Optimisation Algorithm

MILP: Mixed-Integer Linear Programming

RF: Radio Frequency

ADCs: Analogue-to-Digital Converters

RIS: Reconfigurable Intelligent Surface

41R: Fourth Industrial Revolution

M2M: Machine-to-Machine

EEUD: Energy-Efficient Unmanned Aerial Vehicle Deployment
EPOS: Economic Planning and Optimized Selections
MIMO: Multiple Input Multiple Output

PECM: Propulsion Energy Consumption Model
AO: Alternative Optimization

SCA: Successive Convex Approximation

HFL: Heterogeneous Federated learning

CST: Computer Simulation Technology

BER: Bit Error Rate

QoS: Quality of Service

VSWR: Voltage Standing Wave Ratio

MAPL: Maximum Allowable Path Loss
AWGN: Additive White Gaussian Noise

MSE: Mean Squared Error

I. INTRODUCTION

The world's population continues to grow; urbanisation

remains one of the most pressing challenges facing humanity.
Smart sustainable cities offer a promising way to meet this
challenge by creating more livable, equitable, and
environmentally friendly urban environments. Smart
sustainable cities are urban areas that use information and
communication technologies (ICTs) to improve the quality of
life, the efficiency of urban operations and services, and
competitiveness, while ensuring they meet the needs of
present and future generations across economic, social,
environmental, and cultural aspects.

Smart sustainable cities can play a significant role in
achieving the Sustainable Development Goals (SDGs) by
using technology to improve the efficiency of urban systems
and services. For instance, goal 11 (sustainable cities and
communities), where smart cities can help to make cities
more inclusive, safe, resilient, and sustainable by improving
infrastructure, transportation, waste management, and
responsible power consumption [1, 2]. According to the
International Telecommunication Union (ITU), the revised
the concept of "Smart City" is "Smart Sustainable City",
which can be defined as “A Smart Sustainable City is an
innovative city that uses Information and Communication
Technologies (ICTs) and other means to improve quality of
life, efficiency of urban operation and services, and
competitiveness, while ensuring that it meets the needs of
present and future generations with respect to economic,
social, environmental as well as cultural aspects” [3]. Thus,
according to McKinsey, the
Fourth Industrial Revolution
(4IR) has a significant impact
on smart, sustainable cities,
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where the combination of Machine Learning (ML) with
communication systems can open new possibilities for
innovation.

Figure 1 shows the main pillars of the 4IR that support smart
cities [4, 5]. Two main pillars of the 4IR that support smart
cities are ML and Internet of Everything (IoE), which have
the potential to revolutionise the way we live, work, and
interact with the world around us. Where the IoE is the
concept of connecting any device with an on/off switch to the
Internet and/or to other devices, this includes everything from
cellphones, coffee makers, washing machines, headphones,
wearable devices, and smart cities. At the same time, ML is a
form of artificial intelligence (AI) that enables software
applications to become more accurate at predicting outcomes
without being explicitly programmed to do so. ML algorithms
use historical data as input to predict new output values [6, 7].

3. Human-machine intera-
tion

1. Connectivity, data,
computational power

Sensors
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intelligence
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[Fig.1: The Main Pillars of the 4IR that Support Smart Cities]

Interest in unamended, helium-filled solar-powered
platforms, such as High-Altitude Platforms (HAPs) that
operate in the stratosphere, up to 20km above ground, is
growing. They have many merits, such as satellite systems,
but without the distance penalty. The combination of IoE and
ML connected to the HAPs system would enable a wide range
of smart city solutions. For example, the IoE can be used to
collect data from sensors throughout the city, and ML can be
used to analyse this data to identify patterns and trends with
aerial support from HAPs' wireless network. This information
can then be used to make informed decisions about improving
the efficiency and sustainability of urban systems [8, 9]. In
the context of smart sustainable cities, both ML and IoE can
be used to:

= Collect data from sensors and devices throughout the

city. This data can be used to monitor and improve a
wide range of urban systems, such as transportation,
energy, and waste management.

= Enable real-time communication between devices. This

can be used to improve coordination and efficiency in
areas such as traffic management and emergency
response.

= Provide citizens with access to information and services.

This can be used to improve civic engagement and make
cities more responsive to residents' needs.

Some specific examples of how the IoE is being used to
create smart sustainable cities include: smart grids, smart
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buildings and streets, intelligent transportation systems, and
innovative waste management systems. The IoE has the
potential to make a significant contribution to achieving the
SDGs. By improving the efficiency of urban systems and
services, the IoE can help to reduce energy consumption,
emissions, and waste [10, 11].

The IoE can also improve the quality of life for urban
residents by providing access to information and services that
enable them to live more sustainably. As the IoE continues to
develop, we can expect to see even more innovative solutions
that help to create more sustainable cities. The IoE and ML
are potent tools for building more sustainable cities. By using
these technologies to collect and analyse data, cities can make
informed decisions to improve the efficiency and
sustainability of urban systems [ 12]. Moreover, the upcoming
6G network generation is being designed to meet the stringent
requirements of smart cities in terms of quality of service,
availability, and dependability.

The rest of this paper is organized as follows: Section 2
presents literature review. Section 3 describes the proposed
model along with the mathematical calculations. Section 4:
The simulations, validation, and highlight the main findings.
Section 5, the paper concludes.

II. LITERATURE REVIEW

This section shows articles that collectively provide insights
into the key technologies, applications, and challenges in the
context of smart cities. This section presents representative
literature reviews related to our research that highlight
research gaps, thereby allowing our research motivations to
emerge.

This section also highlights the importance of energy
efficiency and sustainability, and the transformative potential
of these technologies in creating more innovative and
efficient urban environments. The articles also emphasize the
role of Al in empowering wireless networks and enabling
innovative applications such as digital twins and immersive
realities. Overall, these recent articles contribute to our
understanding of the advancement of smart cities in the era of
6G, ML, and IoE, thereby clarifying our motivations.

Articles in [12-14] emphasize the importance of HAPs in
supporting last-mile connectivity and empower smart cities in
various aspects. Authors in [15] introduced a collaborative,
efficient energy management network using a smart grid and
an IoT framework for sustainable management in smart cities.
The obtained results confirm that utilising such an advanced
concept in the current digital era would reduce energy
consumption and hence support a sustainable smart city.

The use of [oT and the Internet of Vehicles (IoV) for waste
management in smart cities was presented in [16]. An IoV-
based data collection architecture for waste management in a
sustainable smart city has been considered, relying on static
and mobile sensor nodes; however, data can also be collected
using mobile vehicles and fixed base stations.

A multipath propagation channel with Doppler frequency
shift is discussed in [17] for a digital twin in an urban
vehicular environment, using both
conventional and dynamic
channel estimation schemes.
Results were promising, yet
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geometry-based areas could increase computation load. As a
recommendation, channel optimisation for future smart cities
is pioneering work that could open new research
opportunities for connected autonomous vehicles.

Researchers in [18] emphasis that Machine-to-Machine
(M2M) communication applications, which support IoE,
requiring low data rates are now endorsed by innovative
satellite communication technologies. IoT devices in rural
areas can benefit from backup connectivity thanks to satellite
technology. A recent study presented a technique for
integrating solar and wind turbine power generation systems
with satellite communication technologies into a smart grid.

To convey data swiftly between communication channels
and receivers with reasonable energy usage, an optimization
approach is recommended in [19], which can help improve
energy grids for a sustainable smart city. [oT and ML are
discussed as possible solutions to smart cities’ farming in
[20]. Where various parameters can be monitored in an
optimized LoRa network. Results indicate low power
consumption of the proposed work.

In [21], researchers are moving towards smart sustainable
cities using Li-Fi technology due to its high bandwidth.
Power consumption and continuous wireless connectivity
remain open challenges. The nested cells distribution of the
beehive multilayer architecture for 6G in Futuristic
Sustainable Smart Cities was presented in [22]. Results
indicate a noticeably high level of computational power on
the ground, due to the nature of the terrestrial network. Thus,
an aerial network, such as HAPs or satellites, would mitigate
this issue. Channel modelling for IoT and smart cities was
intensively reviewed in [23] with highlights of the challenges
and opportunities. Where optimizing propagation models for
power consumption reduction is recommended to support
smart sustainable cities.

A decentralized energy-aware coordination model was used
in [24] for spatio-temporal sensing via a swarm of 10 drones.
Accuracy and efficiency were obtained using the proposed
model. Authors in [25] present a study to maximise the energy
efficiency of a UAV system by jointly optimising the UAV
trajectory and IoT communication resources. The proposed
framework suggested an improvement in energy efficiency.

Further, similar work presented in [26] considers an air-to-
ground propagation model and jointly optimises the UAV
trajectory with reconfigurable intelligent surface (RIS) phase
shifts. The proposed Al framework used an energy-efficient
unmanned aerial vehicle deployment (EEUD) algorithm. Yet,
it is recommended as future work to investigate further
propagation models that consider the Rician factor and
elevation angle.

A combined optimization of task segmentation and UAV
with resource allocation with intelligent reflecting surfaces
(IRS) for wireless powered mobile edge computing networks
in smart cities was discussed in [27]. The IoT devices
exhibited reduced energy consumption. Researchers in [28]
used a swarm of intelligent UAVs for distributed sensing to
enhance power consumption using Economic Planning and
Optimized Selections (EPOS) for the testbed. This approach
can effectively support innovative applications in cities and
farms.

A framework introduced in [29] to compute UAV swarm
placement and task scheduling for better energy consumption.
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A tethered UAV coverage over innovative environments was
introduced in [30] using flexible beamforming. The proposed
work aims to maximise the number of users while minimising
energy waste. Another approach to noticeably reduce energy
consumption while utilising UAVs is to optimise task
offloading, as presented in [31].

A method discussed in [32] that combined a deep learning-
based energy optimization and an adaptive adjustment for
UAV-aided communication. The method shows a decent
improvement in energy consumption. However, considering
LoS and NLoS conditions in complex environments is needed
as future work. Authors in [33] worked on reducing the
energy consumption of UAVs via a swarm optimisation
algorithm (SOA) by enhancing UAV routes for disaster
management in smart cities.

In [34], energy consumption and task delays of the UAV
system were optimised using differential evolution and ant
colony techniques. The obtained results supported the
designated aims. Further energy optimisation for UAV path
planning was discussed in [35] using particle swarm
optimisation. The obtained results indicate that the proposed
work has reduced non-essential energy consumption during
UAV flight operations.

Path planning for a swarm of UAVs is presented in [36] to
reduce power consumption in industrial IoT. The proposed
work uses a ground-air propagation model along with
Multiple Input Multiple Output (MIMO) antenna and double-
loop iterative for optimization. More optimization in terms of
UAV trajectory planning for an innovative IoT environment
is discussed in [37].

A Mixed-Integer Linear Programming (MILP) optimisation
model was used in [38] to optimise the energy efficiency of
offloading Cloud-Fog via a trajectory-based UAV. Results
show visible energy efficiency. Authors in [39] discussed
optimising energy for device-to-device UAV
communications for smart industrial IoT. The proposed
system used a directive antenna for propagating RF signals.
Recourse allocation and multi-UAV scenarios are
recommended as future work.

A deep reinforcement learning solution was proposed in
[40] to maximizes data rate of UAV communication in smart
cities. Results show enhancement in data rate and
convergence time. Energy consumption optimisation should
be addressed in future work. To enhance the received signal
patterns in a 5G smart city UAV network, the authors of [41]
used a deep residual learning-based cognitive model. Results
show a modest improvement that slightly affects the energy
consumption of IoT devices and sensors.

A generalized propulsion energy consumption model
(PECM) was proposed in [42, 43] to minimize power
consumption and maximize throughput for multi-UAV
enabled IoT. Where Alternative optimization (AO) and
successive convex approximation (SCA) techniques were
applied. The obtained results showed that the UAV trajectory
has reduced the energy consumption and resource
management.

A multi-objective optimization for the trajectory discussed
in [44] for energy efficiency in
Multi-UAV-enabled

communication systems.
Approximating  the  LoS
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propagation channel model is recommended for future work
to suit complex environments. More multi-objective
optimization was presented in [45] to improve throughput and
energy efficiency in UAV-enabled IoT. Where LoS
propagation was used with an omnidirectional antenna, there
was a noticeable improvement in throughput and energy, but
additional transmission conditions warrant further testing and
enhancement.

A joint optimization of energy and delay parameters was
tested in [46] in a cluster-based UAV network. By relaying
tasks between UA Vs using free-space propagation, the aim of
the proposed work was pursued. Optimizing energy
allocation for a space-based system of CubeSats has studied

in [47] using serious gaming approach. Performance
indicators suggest decent improvements in power
consumption. Table 1. Summary of the related study in
relation to the proposed work, so the motivation of our work
can be drawn. There is a need of an optimization framework
that could enhance propagation model that include the full
range of link budget parameters. The optimised model can be
evolved from a MIMO antenna design. Therefore, this paper
aims to develop an intelligent MIMO antenna to optimise the
wireless connectivity of HAPs in smart, sustainable cities
using a machine learning approach, thereby achieving the
goal of power consumption. This is the main contribution of
this work, a noticeable improvement over exciting work.

Table I: Summary of the Related Study

Platform Al Propagation Lo
Ref. Type Framework Model Antenna Type Scope of Optimization Issues
[25] Drone Dlnke!bach Free space Omnidirectional Jointly optimize trajectory & | Antenna constraints leaq to more
algorithm IoT comms. resources power _consumption
EEUD . L Jointly optimize trajectory Antenna constraints lead to more
[26] Drone algorithm Air-to-ground Directional with RIS phase shifts power _consumption
Mixed integer Free space s Combined optimize of UAV Antenna constrains lead to more
[27] Drone . Directional placement and task .
& non-convex with IRS . . power consumption
segmentation with IRS
28] UAV EPQS Free space Omnidirectional Swarm of mte}llgent UAVs Channel modelllr}gA to enhance
algorithm and sensing map connectivity
Airborne M“l?" Multi-ray e Convergence of airborne Antenna constrains lead to more
[29] objectives . Omnidirectional . .
. Propagation swarm and task scheduling power consumption
algorithm
Tethered . Optimizing bandwidth and Lo
[30] UAV X Air-to-ground MIMO power allocations No Al optimization
Three-layer Lo . L
31] UAV game Free space Omnidirectional Optimizing tasks offloading Deep learning is
. suggested as future work
algorithm
[32] Drone Deep Learning Free space Omnidirectional | Optimizing for edge device Beyond LoS is not considered
[33] UAV SOA Radio | 5 nidirectional Optimize UAV route Antenna constrains lead to more
propagation power consumption
differential Ground users’ mobility can be
[34] UAV evolution & Free space Omnidirectional | Optimizing tasks offloading . ty
considered as future work
ant colony
35] UAV Partl_cle_ swarm Free space Omnidirectional Optimizing path planning of | Environmental factors have to be
optimization UAV considered
[36] UAV Dguble_loop Channgl MIMO Swarm patAh planr_nn_g & tasks Channel modeling constrains
iterative attenuation oftloading optimization
multi-obiective An enhanced air-ground channel
[37] UAV 1-opjec Free space Omnidirectional UAV trajectory planning model is recommended as future
optimization work
UAV trajectory planning . . .
[38] Drone MI.LP. Free space Omnidirectional & tasks offloading Design he_unstlc algonthms for
optimization S multi-UAV scenarios
optimization
Mulitiobjective
[39] Drone evolutionary Free space MIMO Enhance transmission Channel modeling constrains
algorithm
[40] UAV Deep Q- Air-to-ground Directional Enhance sn'lall'cells Energy consumption optimization
Learning communication should be addressed
[41] UAV Deep resldual Rayleigh Directional Develop connectivity Channel modeling constrains
learning channel
Jointly optimizing .
[42] UAV (AO) & (SCA) | LoS channel | Directional scheduling & UAV Antenna constrains lead to more
[43] . . power consumption
trajectory variables
R Jointly optimizing -
[43] UAV mult!-o.bjec'tlve Air-to-ground | Omnidirectional throughput & UAV Deep learning is
[46] optimization . suggested as future work
trajectory
[47] CubeSats Serious gaming Free space MIMO Op tlmlzlgzgog:;pagatlon Channel modeling constrains
Machine Log-normal Intelligent Optimizing beams, gains, .
Proposed HAP learning shadowing MIMO and power consumption Complexity
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III. 3D PROPOSED MODEL

The proposed model aims to develop an intelligent MIMO
antenna to optimise the wireless connectivity of HAPs in
smart, sustainable cities using a machine learning approach,
thereby achieving the goal of power consumption. Figure 2
shows an outline of the proposed structure, which consists of
three layers: 1) Cloud layer, which has the cloud for storage
and processing tasks. 2) Edge layer, which has the HAP
network that includes the HAP platforms with their
communication payload, including MIMO antenna. 3) IoE
layer, which has the ground control station, ground sensors,
and mobile devices. The remainder of the section will cover
the mathematical analysis of the proposed work and the
design specifications of the smart MIMO antenna.

3
Layer

-~ @& &
Layer
!
Edge a = d = d =
Layer
1
Smart Smart health
mart

[Fig.2: Outline of the Proposed Structure]

Log Normal Shadowing is the propagation model
considered here, together with its link budget parameters,
which help predict the behaviour of electromagnetic waves as
they propagate through various environments and under
shadowing conditions. This propagation model is associated
with MIMO intelligent antenna, enabling spatial multiplexing
or diversity techniques that exploit multi-path propagation
characteristics [48, 49].

A. The Proposed ML Model

Figure 3 shows the proposed intelligent MIMO system for
a 6G network using an ML model. Radio Frequency (RF)
chains and Analogue-to-Digital Converters (ADCs) are
integrated into an ML model, thereby enhancing beam
patterns for improved wireless connectivity and reducing
power consumption. Thanks to the adaptivity of the ML
framework, which helps adopt the geomatic channel model
for the HAP network [52-55]. The equations for an intelligent
MIMO system using Heterogeneous Federated learning
(HFL), which is one of the advanced collaborative ML
techniques, as per equations (1) to (4):

k

VFL(#) = z

k=1

mk

L@ @

k
1 i i
Lk(vT/)=ﬂz LR yD) .. (@
k=1

Ly

Wk::Wk_a6W
k

(3)
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C)

where Dm, (W) refers to the FL objective function, IZF-'(W)
refers to the loss function of k clients, % refers to the

updated global state, m refers to local training samples.
The objective function of the proposed HFL model is based
on user distributions, in which intelligent MIMO beams and
gains are clustered and optimised according to connectivity
(LoS or NLoS) scenarios to achieve high beamforming
performance. Therefore, thus optimizing power consumption.

ANTENNA
LAYER =3

Y.

RF i
HARDWARE :
LAYER

MACHINE
LEARNING
MODEL

ML
LAYER

[Fig.3: The Proposed ML Model]

The log-normal shadowing propagation model that is
considered in this work is modified by evolving the elevation
angle factor () when calculating the distance, which is a
noticeable improvement that suits the nature of space-based
communication systems like HAP. Further, the link budget
parameters represent a comprehensive accounting of all the
gains and losses that a communication signal experiences as
it travels from the HAP transmitter to the terrestrial receiver.
This analysis is vital to ensure the efficiency and reliability of
the wireless connectivity via the HAP system. THE received
signal power is sufficient for reliable communication. The
analysis is crucial in the design and optimization of wireless
communication systems. The link budget parameters include
RSSI (Received Signal Strength Indicator, in dBm), SINR
(Signal-to-Interference-plus-Noise Ratio, in dB), and T
(Throughput, in b/s) [50, 51].

The equations for the log-normal shadowing model and the
link budget parameters as per equations (5) to (9):

d
PL =PL(d0)+ 10 *n * log(E) +X .. (5

d = 2E, [cos'1 ( * COS (6)) - 0] .. (6)

Er + ht
RSSI =pt+gt+gr—PL—-L .. (7)
SINR = RSs 8
“Ny1 v ®

SNIR
T = B.xlog2 (1 + <10. 10 )) « 9

Where PL refers to the path

loss of the log-normal
shadowing propagation
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model, PL (d0) refers to path loss in dB at a distance d0; y is
a zero-mean Gaussian-distributed random variable (in dB)
with standard deviation (o). This variable is used only when
a shadowing effect is present; otherwise, it is set to 0. n
denotes the path-loss exponent for various environments. [,
refers to Earth’s radius at 6,378 km, ht refers to the altitude of
HAP, and 0 refers to the minimum elevation angle from a
receiver and/or user’s location.

B.The 3D Digital Antenna Design

In this proposed work, a Microstrip Patch intelligent MIMO
antenna is designed using Computer Simulation Technology
(CST) software to achieve long-range wireless
communication across different environments with the
highest possible efficiency. Figure 4 shows the Microstrip
Patch intelligent MIMO antenna using CST at 28 GHz.
Further, the 3D Patch Microstrip intelligent MIMO antenna
enables us to analyse electromagnetic components through its
three layers.

Microstrip Patch

Microstrip Feed

Port
Substrate
Ground

[Fig.4: 3D Design of the Microstrip Patch Intelligent
MIMO Antenna Using CST]

Figure 5 displays. The first layer is the ground layer, made
of copper, which improves radiation efficiency and protects it
from unwanted signals. The second layer, the Substrate layer
made of Rogers RT5880, provides desirable properties that
make it well-suited for antenna substrates, such as thermal
conductivity and dimensional stability, thereby improving the
antenna’s performance and reliability. The third layer is the
patch layer made of copper. The Inset-fed type was adopted
in this design because it provides a strong bandwidth for
resistance and is easy to integrate, making it a better option
for HAP use.

5

component1:GND
Material Copper (annealed)
Type Lossy metal

Mu 5:8e-07 [S/m)
Electric cond. 5:89-07 [S/m]

Rho 8930 [kg/m?]
Thermal cond 401 [W/K/m]
Specific heat 390 [J/K/kg)
Diffusivity 0.00011541 [m¥s]
Young's modulus 120 [kN/mm?)
Thermal expan 17 [1e-6/K

CST Studio Suite

Learning Edition |

a. First Layer

CST Studio Suite

Learning Edition

5

component1:sub

Material Rogers RT-duroid 5880 (lossy)
Type Normal

Epsilon 22

Electrictand 0.0009 (Const. fit)

Mu

Thermal cond. 0.2 [W/K/m]

T ——

e

b. Second Layer
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5 CST Studio Suite
Learning Edition

component1:patch

Material Copper (annealed)
Type Lossy metal

Mu 1

Electric cond. 5.8e+07 [S/m]

Rho 8930 [kg/m3]
Thermal cond. 401 [W/K/m]
Specific heat 390 [J/K/kg]
Drfusivity 0.000115141 [m 2/s]
Young's modulus 120 [k N/mm?2]
Thermal expan. 17 [1e-6/K]

c. Third Layer

[Fig.5: The three Layers of the 3D Patch Microstrip
Smart MIMO Antenna in CST Software]

Table II: Measurements of the Three Layers of the

Optimised Antenna
The Ground Layer
Parameter Symbol Value (mm)
Width WGr 40
Length LGr 40.61
Thickness hG 0.035
The Substrate Layer
Parameter Symbol Value (mm)
Width W 40
Length L 40.61
Thickness h, 0.508
The Patch Layer
Parameter Symbol Value (mm)
Width W, 9.9
Length L, 9.7
Thickness h, 0.035
The Gap Dimensions
Parameter Symbol Value (mm)
Width Wg 0.5
Length Lg 2.4
The Feed Line Dimensions
Parameter Symbol Value (mm)
Width Wr 0.7
Length Lg 4.75

The simulation specifications is considered in this work a
5G MIMO that obtained ITU Radiocommunication Study as
follows: frequency [28 GHz], transmitter power [43 dBm],
modulation type [256 QAM], bandwidth [20 MHz], noise
figure [7 dBm], transmitter altitude [20 km], transmitter
antenna gain with diversity [20 dBi], received altitude [1.5
m], receiver antenna gain with diversity gain [5 dBi], receiver
power [27 dBm], transmitter sensitivity [-88 dBm],
interference margin loss [5 dB], losses [1.2 dB], receiver
sensitivity [-87.3 dBm].

Figure 6 shows the optimised antenna shape for a 4x4
microstrip patch MIMO intelligent antenna, while Table 2
presents measurements of the three layers of the optimised
antenna.

CST Studio Suite
Learning Edition

[Fig.6: The Optimized Antenna Shape Using a 4x4
Microstrip Patch MIMO Antenna in CST Software]

Figure 7 displays the beam
patterns of the learned
codebook wusing the HFL
model of an intelligent MIMO
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antenna. It shows how the ML-driven MIMO antenna
adaptively optimises beamforming: focusing energy for LoS
users while flexibly shaping beams to overcome blockage for
NLoS users. This enables improved connectivity, spectral
efficiency, and energy savings, which are essential for HAP-
based communication systems in smart, sustainable cities.

using ML modet

=) h

Multi-lobe Beam
for NLoS users

—» Ground Level

[Fig.7: The Proposed Beam Patterns of the Learned Codebook
Using the HFL Model of an Intelligent MIMO Antenna]

IV. RESULTS AND DISCUSSION

This section presents the predicted results and highlights the
main features of the proposed solution, starting with
connectivity and link-budget parameters, then progressing to
MIMO antenna design, and finally to the optimised results of
the intelligent MIMO antenna using the HFL model. The
proposed framework was validated using Energy per Bit to
Noise Spectrum Density (Eb/No) and Bit Error Rate (BER),
two well-known Quality of Service (QoS) parameters, to
assess the effectiveness of the wireless system from the
perspective of smart [oE devices.

Understanding gain and directivity is crucial for selecting
and using MIMO intelligent antennas effectively in various
wireless communications, let alone when they are optimised
and enhanced. Figures 8 and 9 show the gain and directivity
of the proposed Microstrip Patch MIMO intelligent antenna
in non-optimized and optimized scenarios using CST toolbox,
respectively. Clearly, higher gain and directivity indicate that
the antenna is more focused in its radiation, which has an
excellent impact on receiving signals in the desired direction
over longer distances with greater efficiency, as in the
optimised antenna scenario.

From these figures, it can be concluded that, in an optimised
antenna scenario, the proposed Microstrip Patch MIMO
intelligent antenna improves signal quality, capacity,
interference-rejection capabilities, radiation-pattern
flexibility, and spectral efficiency. Another notable point is
that the coverage footprint and connectivity were better in the
optimised antenna scenario, with parallel transmission and
reception of independent data streams, supporting IoE
applications in smart, sustainable cities.

CST Studio Suite
Learning Edilion

farfield (f-28) [3]
Type farfield

Approximation enablec
nt

0.0510d8
0.2792d8
Gain 2501 dBi

a. Non-optimised Scenario
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CST Studio Suite
Learning Edition

farfield (f=28) [1]

Type Farfield
Approximation enabled (kR
Component Abs.
Output Gain
Fraquency 28 GHz
Rad. Effic. 1917d8

Gain 9.136 dBi z X

Tot. Effic. -2.678dB

b. Optimised Scenario

[Fig.8: Gain of the Microstrip Patch MIMO Intelligent
Antenna Using the CST Toolbox]

z dBi
Azim/Elevation

CST Studio Suite

Learning Edition

5]

farfield (f=28) [3]

Type Farfield
Approximation enabled (kR > 1)
Component ~ Abs

Output Directivity
Frequency 28 GHz

Rad. Effic. 005016 dB
Tot. Effic: -0.3792dB

Dir 3552Bi £

a. Non-optimized Scenario

g CST Studio Suite

Learning Edition

farfield (f- 28) [1]

Type Farfield
Approximation enabled (kR > 1]
Component  Abs

Output
Freduency
Rad, Effic. -1917dB
Tot. Effic. -2.678d8
Dir. 11.05d8i z

Directivity
23GHz

b. Optimized Scenario

[Fig.9: Directivity of the Microstrip Patch MIMO
Intelligent Antenna Using CST Toolbox]

In addition to gain and directivity, there are vibrant
parameters by which to evaluate the performance of the
microstrip patch MIMO intelligent antenna, as demonstrated
in Figure 10. The parameters under consideration are as
follows: reflection coefficient (S11), bandwidth, voltage
standing wave ratio (VSWR), and efficiency. As illustrated in
Figure 10, the graphs demonstrate the parameters in both
optimised and non-optimised scenarios. The S11 optimized
The value indicates good impedance matching and efficient
power transfer, which, in turn, improves antenna
performance.

The optimised bandwidth indicates a wider bandwidth that
can operate effectively over a broader frequency range,
making it versatile for a wvariety of applications. The
optimised VSWR for a microstrip patch MIMO intelligent
antenna is less than 2, which is acceptable. The efficiency of
a system is measured by the ratio of the radiated power to the
total input power. A higher efficiency indicates that the
antenna is less lossy and can radiate more of the power that is
fed into it. The optimised antenna demonstrated an efficiency
of 90.08%, indicating a notable
performance enhancement.

Table 3 shows numerical
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results for the evaluation parameters of the Microstrip Patch
MIMO intelligent antenna in non-optimised and optimised
scenarios. Overall, it is evident that there is a noticeable
improvement of the optimized Microstrip Patch MIMO
intelligent antenna in relation to non-optimized version.

Table III: Numerical Results of the Evaluation Parameters of
the Microstrip Patch MIMO Intelligent Antenna

Parameter Values of a Non- Values of Optimize
Optimised Antenna Antenna
Gain (dB) 3.501 9.136
Directivity(dBi) 3.552 11.05
S11 (dB) -20.2424 -28.042448
BW (GHz) 3.1459 0.52909
VSWR 1.5375576 1.0825024
Efficiency (%) 83.74% 94.08%
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[Fig.10: Evaluating Parameters of the Microstrip Patch
MIMO Intelligent Antenna in Optimized Scenario Using
CST Toolbox]

[Fig.11: The Predicted Results of the Link Budget
Parameters]

Figure 11 shows the predicted link budget parameters for
the modified log-normal shadowing propagation model, with
0 included in both non-optimised and optimised scenarios,
using MATLAB. In the stratosphere, the HAP altitude is set
to 20km above ground. PL predicted results of the log-normal
shadowing model show values below the maximum allowable
path loss (MAPL) value of 150dB. Indeed, the PL increases
gradually as the footprint converges. The standard deviation
of the log-normal random variable is called the shadowing
margin.

The shadowing margin is a measure of RSSI variability.
Where the RSSI is aligned with PL predictions, it shows
similar characteristics, with a peak value of -88 dBm. SNIR
ranges between the upper and lower bounds of 6-25 dB. T
falls with distance and with higher PL. Network footprint
coverage is affected by transmitter and receiver antenna
specifications, geomorphology, and a moderate 6 of 15°.
Therefore, the HAP convergence reaches 100km at a HAP
altitude of 20 km.

After optimisation, the predicted link budget results have
shown a noticeable improvement. This suggests that the
signal has become stronger,
resulting. in better
communication quality at all
distances.  Further, these
improvements  collectively
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enhance the system's performance. Furthermore, optimized
link budget results not only lead to better connectivity, but
also strengthen power consumption, which enhance the IoE
sensors and devices in sustainable smart city.

To validate the performance of the proposed Microstrip
Patch MIMO intelligent antenna from a power consumption
perspective, the two QoS parameters (Eb/No and BER) are
evaluated. Figure 12 shows a comparison of the predicted
Eb/No and BER values of an Additive white Gaussian noise
(AWGN) channel of the proposed Microstrip Patch MIMO
intelligent antenna in non-optimised and optimised scenarios
using the “semilogy” function in MATLAB.

Evidently, the optimized scenario shows better Eb/No

performance at the lowest BER achieved ofl 1x107° with
around a 4dB difference. Another observed point is that as the
Eb/No and BER values decrease, wireless link performance
enhances. This means that a channel with low error rates is
used, and minimum transmission power is used. Thanks to the
optimized diversity gain and collaborative beamforming of
the proposed Microstrip Patch MIMO intelligent antenna.
This maximises link budget, capacity, and coverage without
consuming more transmission power between the HAP and
the ground IoE nodes.

Bearing in mind that enhancing the power consumption of
IoE nodes is an essential matter in the context of smart,
sustainable cities. Optimizing how these devices sip, rather
than guzzle, electricity is crucial for both sustainability and
cost efficiency. The benefits of optimizing energy use in these
complex ecosystems are manifold:

= Less energy use equals a lower carbon footprint,

aligning with global sustainability goals.

= Extended IoE devices' lifetime, where batteries in

remote sensors last longer, minimising maintenance and
device replacements.

= Cost savings via reducing energy bills for individuals

and businesses, making IoE more accessible and
attractive.

= Economic optimization, where Smart energy grids and

optimized resource allocation save city budgets and
enable investments in other crucial areas like education
and healthcare.

L L
E E] =

[Fig.12: Qos Parameters of Eb/No and BER to Validate
the Proposed Work]

Figure 13 shows the Mean Squared Error (MSE)
performance of the HFL model. The graph shows the training,
testing, and validation process, with error rates gradually
decreasing up to 43 iterations. Then, the training stops as the
error rate increases. The achieved result seems rational, as no
significant overfitting has occurred. Also, the ultimate MSE
is low, and the test-set and validation-set errors are similar.
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[Fig.13: The MSE Performance of the HFL Model]

V. CONCLUSION AND FUTURE WORK

The future of smart, sustainable cities depends on
leveraging 4IR technologies to build interconnected, data-
driven, and eco-efficient urban systems. Integrating IoE with
intelligent MIMO antennas offers significant potential to
enhance these cities. This study focuses on optimising energy
efficiency in IoE devices by developing an intelligent
microstrip patch MIMO antenna to improve HAPs’ wireless
connectivity and power consumption using the HFL model.
Simulations were performed in CST at 28 GHz, and
MATLAB was used for HFL and validation through Eb/No
and BER parameters. Results showed a 31% reduction in
power use and improved last-mile connectivity. Future work
will include real-world testing to compare simulated and
experimental outcomes.
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