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Abstract: The development of smart sustainable cities 

increasingly relies on advanced communication infrastructures to 

support intelligent transportation systems, energy management, 

and data-intensive urban services. The rapid expansion of Internet 

of Everything networks has led to rising energy consumption, 

posing a critical challenge for sustainable urban development. 

This research was conducted to address the need for energy-

efficient, high-performance wireless communication solutions 

capable of supporting large-scale, innovative city applications. In 

particular, High Altitude Platform Systems have emerged as 

promising communication enablers due to their wide coverage and 

deployment flexibility; however, their effectiveness is constrained 

by the energy efficiency and performance of antenna systems. This 

study investigates the application of Machine Learning techniques 

for the optimisation of 3D antenna structures to enhance 

communication efficiency. The 3D intelligent Microstrip Patch 

Multiple Input Multiple Output antenna operating at 28 GHz was 

designed and optimised using a Machine Learning-driven 

framework. The antenna design process was carried out using 3D 

digital Computer Simulation Technology software, enabling 

precise electromagnetic modelling and performance evaluation. 

Machine Learning algorithms were employed to systematically 

adjust antenna parameters, allowing the identification of optimal 

design configurations beyond conventional trial-and-error 

methods. The performance of the optimised antenna was evaluated 

using Quality of Service parameters for power efficiency and last-

mile connectivity. Comparative analysis with non-optimised 

antenna designs demonstrated substantial performance gains. The 

results reveal an improvement of up to 31% in power efficiency, 

accompanied by enhanced connectivity performance. These 

findings indicate that Artificial Intelligence-driven antenna design 

is a practical approach to developing sustainable, energy-efficient 

communication infrastructure for future, innovative city 

environments. 

Keywords: 3D Digital Design, AI, ML, Optimisation, Smart 

Cities. 

Nomenclature: 

ICTs: Information and Communication Technologies 

ITU: International Telecommunication Union  

SDGs: Sustainable Development Goals  

ML: Machine Learning 

AI: Artificial Intelligence 

IoE: Internet of Everything 

HAPs: High-Altitude Platforms  
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IoV: Internet of Vehicles 

SOA: Swarm Optimisation Algorithm  

MILP: Mixed-Integer Linear Programming  

RF: Radio Frequency  

ADCs: Analogue-to-Digital Converters  

RIS: Reconfigurable Intelligent Surface 

4IR: Fourth Industrial Revolution 

M2M: Machine-to-Machine 

EEUD: Energy-Efficient Unmanned Aerial Vehicle Deployment 

EPOS: Economic Planning and Optimized Selections 

MIMO: Multiple Input Multiple Output 

PECM: Propulsion Energy Consumption Model 

AO: Alternative Optimization 

SCA: Successive Convex Approximation 

HFL: Heterogeneous Federated learning 

CST: Computer Simulation Technology 

BER: Bit Error Rate 

QoS: Quality of Service 

VSWR: Voltage Standing Wave Ratio 

MAPL: Maximum Allowable Path Loss 

AWGN: Additive White Gaussian Noise 

MSE: Mean Squared Error  

I. INTRODUCTION

The world's population continues to grow; urbanisation

remains one of the most pressing challenges facing humanity. 

Smart sustainable cities offer a promising way to meet this 

challenge by creating more livable, equitable, and 

environmentally friendly urban environments. Smart 

sustainable cities are urban areas that use information and 

communication technologies (ICTs) to improve the quality of 

life, the efficiency of urban operations and services, and 

competitiveness, while ensuring they meet the needs of 

present and future generations across economic, social, 

environmental, and cultural aspects.  

Smart sustainable cities can play a significant role in 

achieving the Sustainable Development Goals (SDGs) by 

using technology to improve the efficiency of urban systems 

and services. For instance, goal 11 (sustainable cities and 

communities), where smart cities can help to make cities 

more inclusive, safe, resilient, and sustainable by improving 

infrastructure, transportation, waste management, and 

responsible power consumption [1, 2]. According to the 

International Telecommunication Union (ITU), the revised 

the concept of "Smart City" is "Smart Sustainable City", 

which can be defined as “A Smart Sustainable City is an 

innovative city that uses Information and Communication 

Technologies (ICTs) and other means to improve quality of 

life, efficiency of urban operation and services, and 

competitiveness, while ensuring that it meets the needs of 

present and future generations with respect to economic, 

social, environmental as well as cultural aspects” [3]. Thus, 

according to McKinsey, the  

Fourth Industrial Revolution 

(4IR) has a significant impact 

on smart, sustainable cities, 
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where the combination of Machine Learning (ML) with 

communication systems can open new possibilities for 

innovation.  

Figure 1 shows the main pillars of the 4IR that support smart 

cities [4, 5]. Two main pillars of the 4IR that support smart 

cities are ML and Internet of Everything (IoE), which have 

the potential to revolutionise the way we live, work, and 

interact with the world around us. Where the IoE is the 

concept of connecting any device with an on/off switch to the 

Internet and/or to other devices, this includes everything from 

cellphones, coffee makers, washing machines, headphones, 

wearable devices, and smart cities. At the same time, ML is a 

form of artificial intelligence (AI) that enables software 

applications to become more accurate at predicting outcomes 

without being explicitly programmed to do so. ML algorithms 

use historical data as input to predict new output values [6, 7]. 
 

 

[Fig.1: The Main Pillars of the 4IR that Support Smart Cities] 

Interest in unamended, helium-filled solar-powered 

platforms, such as High-Altitude Platforms (HAPs) that 

operate in the stratosphere, up to 20km above ground, is 

growing. They have many merits, such as satellite systems, 

but without the distance penalty. The combination of IoE and 

ML connected to the HAPs system would enable a wide range 

of smart city solutions. For example, the IoE can be used to 

collect data from sensors throughout the city, and ML can be 

used to analyse this data to identify patterns and trends with 

aerial support from HAPs' wireless network. This information 

can then be used to make informed decisions about improving 

the efficiency and sustainability of urban systems [8, 9]. In 

the context of smart sustainable cities, both ML and IoE can 

be used to:  

▪ Collect data from sensors and devices throughout the 

city. This data can be used to monitor and improve a 

wide range of urban systems, such as transportation, 

energy, and waste management. 

▪ Enable real-time communication between devices. This 

can be used to improve coordination and efficiency in 

areas such as traffic management and emergency 

response. 

▪ Provide citizens with access to information and services. 

This can be used to improve civic engagement and make 

cities more responsive to residents' needs.  

Some specific examples of how the IoE is being used to 

create smart sustainable cities include: smart grids, smart 

buildings and streets, intelligent transportation systems, and 

innovative waste management systems. The IoE has the 

potential to make a significant contribution to achieving the 

SDGs. By improving the efficiency of urban systems and 

services, the IoE can help to reduce energy consumption, 

emissions, and waste [10, 11]. 

 The IoE can also improve the quality of life for urban 

residents by providing access to information and services that 

enable them to live more sustainably. As the IoE continues to 

develop, we can expect to see even more innovative solutions 

that help to create more sustainable cities. The IoE and ML 

are potent tools for building more sustainable cities. By using 

these technologies to collect and analyse data, cities can make 

informed decisions to improve the efficiency and 

sustainability of urban systems [12]. Moreover, the upcoming 

6G network generation is being designed to meet the stringent 

requirements of smart cities in terms of quality of service, 

availability, and dependability.  

The rest of this paper is organized as follows: Section 2 

presents literature review.  Section 3 describes the proposed 

model along with the mathematical calculations. Section 4: 

The simulations, validation, and highlight the main findings. 

Section 5, the paper concludes. 

II.  LITERATURE REVIEW 

This section shows articles that collectively provide insights 

into the key technologies, applications, and challenges in the 

context of smart cities. This section presents representative 

literature reviews related to our research that highlight 

research gaps, thereby allowing our research motivations to 

emerge.  

This section also highlights the importance of energy 

efficiency and sustainability, and the transformative potential 

of these technologies in creating more innovative and 

efficient urban environments. The articles also emphasize the 

role of AI in empowering wireless networks and enabling 

innovative applications such as digital twins and immersive 

realities. Overall, these recent articles contribute to our 

understanding of the advancement of smart cities in the era of 

6G, ML, and IoE, thereby clarifying our motivations.  

Articles in [12-14] emphasize the importance of HAPs in 

supporting last-mile connectivity and empower smart cities in 

various aspects. Authors in [15] introduced a collaborative, 

efficient energy management network using a smart grid and 

an IoT framework for sustainable management in smart cities. 

The obtained results confirm that utilising such an advanced 

concept in the current digital era would reduce energy 

consumption and hence support a sustainable smart city.  

The use of IoT and the Internet of Vehicles (IoV) for waste 

management in smart cities was presented in [16]. An IoV-

based data collection architecture for waste management in a 

sustainable smart city has been considered, relying on static 

and mobile sensor nodes; however, data can also be collected 

using mobile vehicles and fixed base stations.  

A multipath propagation channel with Doppler frequency 

shift is discussed in [17] for a digital twin in an urban 

vehicular environment, using both 

conventional and dynamic 

channel estimation schemes. 

Results were promising, yet 
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geometry-based areas could increase computation load. As a 

recommendation, channel optimisation for future smart cities 

is pioneering work that could open new research 

opportunities for connected autonomous vehicles.  

Researchers in [18] emphasis that Machine-to-Machine 

(M2M) communication applications, which support IoE, 

requiring low data rates are now endorsed by innovative 

satellite communication technologies. IoT devices in rural 

areas can benefit from backup connectivity thanks to satellite 

technology. A recent study presented a technique for 

integrating solar and wind turbine power generation systems 

with satellite communication technologies into a smart grid.  

To convey data swiftly between communication channels 

and receivers with reasonable energy usage, an optimization 

approach is recommended in [19], which can help improve 

energy grids for a sustainable smart city. IoT and ML are 

discussed as possible solutions to smart cities’ farming in 

[20]. Where various parameters can be monitored in an 

optimized LoRa network. Results indicate low power 

consumption of the proposed work.  

In [21], researchers are moving towards smart sustainable 

cities using Li-Fi technology due to its high bandwidth. 

Power consumption and continuous wireless connectivity 

remain open challenges. The nested cells distribution of the 

beehive multilayer architecture for 6G in Futuristic 

Sustainable Smart Cities was presented in [22]. Results 

indicate a noticeably high level of computational power on 

the ground, due to the nature of the terrestrial network. Thus, 

an aerial network, such as HAPs or satellites, would mitigate 

this issue. Channel modelling for IoT and smart cities was 

intensively reviewed in [23] with highlights of the challenges 

and opportunities. Where optimizing propagation models for 

power consumption reduction is recommended to support 

smart sustainable cities.  

A decentralized energy-aware coordination model was used 

in [24] for spatio-temporal sensing via a swarm of 10 drones. 

Accuracy and efficiency were obtained using the proposed 

model. Authors in [25] present a study to maximise the energy 

efficiency of a UAV system by jointly optimising the UAV 

trajectory and IoT communication resources. The proposed 

framework suggested an improvement in energy efficiency.  

Further, similar work presented in [26] considers an air-to-

ground propagation model and jointly optimises the UAV 

trajectory with reconfigurable intelligent surface (RIS) phase 

shifts. The proposed AI framework used an energy-efficient 

unmanned aerial vehicle deployment (EEUD) algorithm. Yet, 

it is recommended as future work to investigate further 

propagation models that consider the Rician factor and 

elevation angle.  

A combined optimization of task segmentation and UAV 

with resource allocation with intelligent reflecting surfaces 

(IRS) for wireless powered mobile edge computing networks 

in smart cities was discussed in [27]. The IoT devices 

exhibited reduced energy consumption. Researchers in [28] 

used a swarm of intelligent UAVs for distributed sensing to 

enhance power consumption using Economic Planning and 

Optimized Selections (EPOS) for the testbed. This approach 

can effectively support innovative applications in cities and 

farms.  

A framework introduced in [29] to compute UAV swarm 

placement and task scheduling for better energy consumption. 

A tethered UAV coverage over innovative environments was 

introduced in [30] using flexible beamforming. The proposed 

work aims to maximise the number of users while minimising 

energy waste. Another approach to noticeably reduce energy 

consumption while utilising UAVs is to optimise task 

offloading, as presented in [31].  

A method discussed in [32] that combined a deep learning-

based energy optimization and an adaptive adjustment for 

UAV-aided communication. The method shows a decent 

improvement in energy consumption. However, considering 

LoS and NLoS conditions in complex environments is needed 

as future work. Authors in [33] worked on reducing the 

energy consumption of UAVs via a swarm optimisation 

algorithm (SOA) by enhancing UAV routes for disaster 

management in smart cities.  

In [34], energy consumption and task delays of the UAV 

system were optimised using differential evolution and ant 

colony techniques. The obtained results supported the 

designated aims. Further energy optimisation for UAV path 

planning was discussed in [35] using particle swarm 

optimisation. The obtained results indicate that the proposed 

work has reduced non-essential energy consumption during 

UAV flight operations.  

Path planning for a swarm of UAVs is presented in [36] to 

reduce power consumption in industrial IoT. The proposed 

work uses a ground-air propagation model along with 

Multiple Input Multiple Output (MIMO) antenna and double-

loop iterative for optimization. More optimization in terms of 

UAV trajectory planning for an innovative IoT environment 

is discussed in [37].  

A Mixed-Integer Linear Programming (MILP) optimisation 

model was used in [38] to optimise the energy efficiency of 

offloading Cloud-Fog via a trajectory-based UAV. Results 

show visible energy efficiency. Authors in [39] discussed 

optimising energy for device-to-device UAV 

communications for smart industrial IoT. The proposed 

system used a directive antenna for propagating RF signals. 

Recourse allocation and multi-UAV scenarios are 

recommended as future work.  

A deep reinforcement learning solution was proposed in 

[40] to maximizes data rate of UAV communication in smart 

cities. Results show enhancement in data rate and 

convergence time. Energy consumption optimisation should 

be addressed in future work. To enhance the received signal 

patterns in a 5G smart city UAV network, the authors of [41] 

used a deep residual learning-based cognitive model. Results 

show a modest improvement that slightly affects the energy 

consumption of IoT devices and sensors.  

A generalized propulsion energy consumption model 

(PECM) was proposed in [42, 43] to minimize power 

consumption and maximize throughput for multi-UAV 

enabled IoT. Where Alternative optimization (AO) and 

successive convex approximation (SCA) techniques were 

applied.  The obtained results showed that the UAV trajectory 

has reduced the energy consumption and resource 

management.  

A multi-objective optimization for the trajectory discussed 

in [44] for energy efficiency in   

Multi-UAV-enabled 

communication systems. 

Approximating the LoS 
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propagation channel model is recommended for future work 

to suit complex environments. More multi-objective 

optimization was presented in [45] to improve throughput and 

energy efficiency in UAV-enabled IoT. Where LoS 

propagation was used with an omnidirectional antenna, there 

was a noticeable improvement in throughput and energy, but 

additional transmission conditions warrant further testing and 

enhancement.  

A joint optimization of energy and delay parameters was 

tested in [46] in a cluster-based UAV network. By relaying 

tasks between UAVs using free-space propagation, the aim of 

the proposed work was pursued. Optimizing energy 

allocation for a space-based system of CubeSats has studied 

in [47] using serious gaming approach. Performance 

indicators suggest decent improvements in power 

consumption. Table 1. Summary of the related study in 

relation to the proposed work, so the motivation of our work 

can be drawn. There is a need of an optimization framework 

that could enhance propagation model that include the full 

range of link budget parameters. The optimised model can be 

evolved from a MIMO antenna design. Therefore, this paper 

aims to develop an intelligent MIMO antenna to optimise the 

wireless connectivity of HAPs in smart, sustainable cities 

using a machine learning approach, thereby achieving the 

goal of power consumption. This is the main contribution of 

this work, a noticeable improvement over exciting work. 

            

Table I: Summary of the Related Study 

Ref. 
Platform 

Type 

AI 

Framework 

Propagation 

Model 
Antenna Type Scope of Optimization Issues 

[25] Drone 
Dinkelbach 
algorithm 

Free space Omnidirectional 
Jointly optimize trajectory & 

IoT comms. resources 
Antenna constraints lead to more 

power    consumption 

[26] Drone 
EEUD 

algorithm 
Air-to-ground Directional 

Jointly optimize trajectory 

with RIS phase shifts 

Antenna constraints lead to more 

power    consumption 

[27] Drone 
Mixed integer 

& non-convex 

Free space 

with IRS 
Directional 

Combined optimize of UAV 
placement and task 

segmentation with IRS 

Antenna constrains lead to more 

power    consumption 

[28] UAV 
EPOS 

algorithm 
Free space Omnidirectional 

Swarm of intelligent UAVs 
and sensing map 

Channel modelling to enhance 
connectivity 

[29] 
Airborne 

 

Multi-

objectives 

algorithm 

Multi-ray 
Propagation 

Omnidirectional 
Convergence of airborne 

swarm and task scheduling 
Antenna constrains lead to more 

power    consumption 

[30] 
Tethered 

UAV 
x Air-to-ground MIMO 

Optimizing bandwidth and 

power allocations 
No AI optimization 

[31] UAV 

Three-layer 

game 
algorithm 

Free space Omnidirectional 
Optimizing tasks offloading 

 

Deep learning is 

suggested as future work 

[32] Drone Deep Learning Free space Omnidirectional Optimizing for edge device Beyond LoS is not considered 

[33] UAV SOA 
Radio 

propagation 
Omnidirectional Optimize UAV route 

Antenna constrains lead to more 

power consumption 

[34] UAV 

differential 

evolution & 

ant colony 

Free space Omnidirectional Optimizing tasks offloading 
Ground users’ mobility can be 

considered as future work 

[35] UAV 
Particle swarm 

optimization 
Free space Omnidirectional 

Optimizing path planning of 

UAV 

Environmental factors have to be 

considered 

[36] UAV 
Double loop 

iterative 

Channel    

attenuation 
MIMO 

Swarm path planning & tasks 

offloading optimization 
Channel modeling constrains 

[37] UAV 
multi-objective 

optimization 
Free space Omnidirectional UAV trajectory planning 

An enhanced air-ground channel 

model is recommended as future 

work 

[38] Drone 
MILP 

optimization 
Free space Omnidirectional 

UAV trajectory planning 
& tasks offloading 

optimization 

Design heuristic algorithms for 

multi-UAV scenarios 

[39] Drone 
Mulitiobjective 

evolutionary   

algorithm 

Free space MIMO Enhance transmission Channel modeling constrains 

[40] UAV 
Deep Q-

Learning 
Air-to-ground Directional 

Enhance small cells 

communication 

Energy consumption optimization 

should be addressed 

[41] UAV 
Deep residual 

learning 

Rayleigh 

channel 
Directional Develop connectivity Channel modeling constrains 

[42] 

[43] 
UAV (AO) & (SCA) LoS channel Directional 

Jointly optimizing 

scheduling & UAV 
trajectory variables 

Antenna constrains lead to more 

power consumption 

[45] 

[46] 
UAV 

multi-objective 

optimization 
Air-to-ground Omnidirectional 

Jointly optimizing 

throughput & UAV 
trajectory 

Deep learning is 

suggested as future work 

[47] CubeSats Serious gaming Free space MIMO 
Optimizing propagation 

model 
Channel modeling constrains 

Proposed HAP 
Machine 
learning 

Log-normal 
shadowing 

Intelligent 
MIMO 

Optimizing beams, gains, 
and power consumption 

Complexity 
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III. 3D PROPOSED MODEL 

The proposed model aims to develop an intelligent MIMO 

antenna to optimise the wireless connectivity of HAPs in 

smart, sustainable cities using a machine learning approach, 

thereby achieving the goal of power consumption. Figure 2 

shows an outline of the proposed structure, which consists of 

three layers: 1) Cloud layer, which has the cloud for storage 

and processing tasks. 2) Edge layer, which has the HAP 

network that includes the HAP platforms with their 

communication payload, including MIMO antenna. 3) IoE 

layer, which has the ground control station, ground sensors, 

and mobile devices. The remainder of the section will cover 

the mathematical analysis of the proposed work and the 

design specifications of the smart MIMO antenna. 

 

[Fig.2: Outline of the Proposed Structure] 
 

Log Normal Shadowing is the propagation model 

considered here, together with its link budget parameters, 

which help predict the behaviour of electromagnetic waves as 

they propagate through various environments and under 

shadowing conditions. This propagation model is associated 

with MIMO intelligent antenna, enabling spatial multiplexing 

or diversity techniques that exploit multi-path propagation 

characteristics [48, 49].  
 

A.  The Proposed ML Model 

Figure 3 shows the proposed intelligent MIMO system for 

a 6G network using an ML model. Radio Frequency (RF) 

chains and Analogue-to-Digital Converters (ADCs) are 

integrated into an ML model, thereby enhancing beam 

patterns for improved wireless connectivity and reducing 

power consumption. Thanks to the adaptivity of the ML 

framework, which helps adopt the geomatic channel model 

for the HAP network [52-55]. The equations for an intelligent 

MIMO system using Heterogeneous Federated learning 

(HFL), which is one of the advanced collaborative ML 

techniques, as per equations (1) to (4): 

√𝐹𝐿(𝑤̃) = ∑  

𝑘

𝑘=1

 
𝑚𝑘

𝑀
𝐿𝑘(𝑤̃)  …   (1) 

𝐿𝑘(𝑤̃) =
1

𝑚𝑘
∑  

𝑘

𝑘=1

 𝐿(𝑦𝑘̂
(𝑖)

, 𝑦𝑘
(𝑖)

)  …   (2) 

𝑤̃𝑘: = 𝑤̃𝑘 − 𝛼
𝛿𝐿𝑘

𝛿𝑤̃𝑘

  …   (3) 

𝑤̃: = 𝑤̃ − ∑  

𝑘

𝑘=1

 
𝑚𝑘

𝑀
𝑤̃𝑘   …   (4)   

 where  refers to the FL objective function,  

refers to the loss function of k clients,  refers to the 

updated global state,  refers to local training samples. 

The objective function of the proposed HFL model is based 

on user distributions, in which intelligent MIMO beams and 

gains are clustered and optimised according to connectivity 

(LoS or NLoS) scenarios to achieve high beamforming 

performance. Therefore, thus optimizing power consumption. 
 

 

[Fig.3: The Proposed ML Model] 

The log-normal shadowing propagation model that is 

considered in this work is modified by evolving the elevation 

angle factor (θ) when calculating the distance, which is a 

noticeable improvement that suits the nature of space-based 

communication systems like HAP. Further, the link budget 

parameters represent a comprehensive accounting of all the 

gains and losses that a communication signal experiences as 

it travels from the HAP transmitter to the terrestrial receiver. 

This analysis is vital to ensure the efficiency and reliability of 

the wireless connectivity via the HAP system.  THE received 

signal power is sufficient for reliable communication. The 

analysis is crucial in the design and optimization of wireless 

communication systems. The link budget parameters include 

RSSI (Received Signal Strength Indicator, in dBm), SINR 

(Signal-to-Interference-plus-Noise Ratio, in dB), and T 

(Throughput, in b/s) [50, 51].  

The equations for the log-normal shadowing model and the 

link budget parameters as per equations (5) to (9): 

PL = PL( d0) + 10 ∗ n ∗ log (
 d

 d0
) + X …   (5) 

d = 2Er [cos−1 (
Er

Er + ht
∗ cos (𝜃)) − 𝜃]  …   (6) 

RSSI = pt + gt + gr − PL − L  …   (7) 

SINR =
RSs

 N + 1
  …   (8) 

           T = B.∗ log 2 (1 + (10.
𝑆𝑁𝐼𝑅

10 ))  …   (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Where PL refers to the path   

loss of the log-normal 

shadowing propagation 
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model,  refers to path loss in dB at a distance d0; χ is 

a zero-mean Gaussian-distributed random variable (in dB) 

with standard deviation (σ). This variable is used only when 

a shadowing effect is present; otherwise, it is set to 0. n 

denotes the path-loss exponent for various environments.  

refers to Earth’s radius at 6,378 km, ht refers to the altitude of 

HAP, and θ refers to the minimum elevation angle from a 

receiver and/or user’s location. 

B. The 3D Digital Antenna Design 

In this proposed work, a Microstrip Patch intelligent MIMO 

antenna is designed using Computer Simulation Technology 

(CST) software to achieve long-range wireless 

communication across different environments with the 

highest possible efficiency. Figure 4 shows the Microstrip 

Patch intelligent MIMO antenna using CST at 28 GHz. 

Further, the 3D Patch Microstrip intelligent MIMO antenna 

enables us to analyse electromagnetic components through its 

three layers.  

 
[Fig.4: 3D Design of the Microstrip Patch Intelligent 

MIMO Antenna Using CST] 

Figure 5 displays. The first layer is the ground layer, made 

of copper, which improves radiation efficiency and protects it 

from unwanted signals. The second layer, the Substrate layer 

made of Rogers RT5880, provides desirable properties that 

make it well-suited for antenna substrates, such as thermal 

conductivity and dimensional stability, thereby improving the 

antenna’s performance and reliability. The third layer is the 

patch layer made of copper. The Inset-fed type was adopted 

in this design because it provides a strong bandwidth for 

resistance and is easy to integrate, making it a better option 

for HAP use.  

 
a. First Layer 

 
b. Second Layer 

 
c. Third Layer 

[Fig.5: The three Layers of the 3D Patch Microstrip 

Smart MIMO Antenna in CST Software] 

Table II: Measurements of the Three Layers of the 

Optimised Antenna 

The Ground Layer 

Parameter Symbol Value (mm) 

Width WGr 40 

Length LGr 40.61 

Thickness hG 0.035 

The Substrate Layer 

Parameter Symbol Value (mm) 

Width Ws 40 

Length Ls 40.61 

Thickness hs 0.508 

The Patch Layer 

Parameter Symbol Value (mm) 

Width Wp 9.9 

Length Lp 9.7 

Thickness hp 0.035 

The Gap Dimensions 

Parameter Symbol Value (mm) 

Width WG 0.5 

Length LG 2.4 

The Feed Line Dimensions 

Parameter Symbol Value (mm) 

Width WF 0.7 

Length LF 4.75 
 

The simulation specifications is considered in this work a 

5G MIMO that obtained ITU Radiocommunication Study as 

follows: frequency [28 GHz], transmitter power [43 dBm], 

modulation type [256 QAM], bandwidth [20 MHz], noise 

figure [7 dBm], transmitter altitude [20 km], transmitter 

antenna gain with diversity [20 dBi], received altitude [1.5 

m], receiver antenna gain with diversity gain [5 dBi], receiver 

power [27 dBm], transmitter sensitivity [-88 dBm], 

interference margin loss [5 dB], losses [1.2 dB], receiver 

sensitivity [-87.3 dBm]. 

Figure 6 shows the optimised antenna shape for a 4x4 

microstrip patch MIMO intelligent antenna, while Table 2 

presents measurements of the three layers of the optimised 

antenna. 
 

 

[Fig.6: The Optimized Antenna Shape Using a 4x4 

Microstrip Patch MIMO Antenna in CST Software] 

Figure 7 displays the beam 

patterns of the learned 

codebook using the HFL 

model of an intelligent MIMO 
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antenna. It shows how the ML-driven MIMO antenna 

adaptively optimises beamforming: focusing energy for LoS 

users while flexibly shaping beams to overcome blockage for 

NLoS users. This enables improved connectivity, spectral 

efficiency, and energy savings, which are essential for HAP-

based communication systems in smart, sustainable cities. 

 

[Fig.7: The Proposed Beam Patterns of the Learned Codebook 

Using the HFL Model of an Intelligent MIMO Antenna] 

IV. RESULTS AND DISCUSSION 

This section presents the predicted results and highlights the 

main features of the proposed solution, starting with 

connectivity and link-budget parameters, then progressing to 

MIMO antenna design, and finally to the optimised results of 

the intelligent MIMO antenna using the HFL model. The 

proposed framework was validated using Energy per Bit to 

Noise Spectrum Density (Eb/No) and Bit Error Rate (BER), 

two well-known Quality of Service (QoS) parameters, to 

assess the effectiveness of the wireless system from the 

perspective of smart IoE devices.  

Understanding gain and directivity is crucial for selecting 

and using MIMO intelligent antennas effectively in various 

wireless communications, let alone when they are optimised 

and enhanced. Figures 8 and 9 show the gain and directivity 

of the proposed Microstrip Patch MIMO intelligent antenna 

in non-optimized and optimized scenarios using CST toolbox, 

respectively. Clearly, higher gain and directivity indicate that 

the antenna is more focused in its radiation, which has an 

excellent impact on receiving signals in the desired direction 

over longer distances with greater efficiency, as in the 

optimised antenna scenario.  

From these figures, it can be concluded that, in an optimised 

antenna scenario, the proposed Microstrip Patch MIMO 

intelligent antenna improves signal quality, capacity, 

interference-rejection capabilities, radiation-pattern 

flexibility, and spectral efficiency. Another notable point is 

that the coverage footprint and connectivity were better in the 

optimised antenna scenario, with parallel transmission and 

reception of independent data streams, supporting IoE 

applications in smart, sustainable cities.  
 

 
a. Non-optimised Scenario 

 

 

b. Optimised Scenario 

[Fig.8: Gain of the Microstrip Patch MIMO Intelligent 

Antenna Using the CST Toolbox] 

 
a. Non-optimized Scenario 

 
b. Optimized Scenario 

[Fig.9: Directivity of the Microstrip Patch MIMO 

Intelligent Antenna Using CST Toolbox] 

In addition to gain and directivity, there are vibrant 

parameters by which to evaluate the performance of the 

microstrip patch MIMO intelligent antenna, as demonstrated 

in Figure 10. The parameters under consideration are as 

follows: reflection coefficient (S11), bandwidth, voltage 

standing wave ratio (VSWR), and efficiency. As illustrated in 

Figure 10, the graphs demonstrate the parameters in both 

optimised and non-optimised scenarios. The S11 optimized  

The value indicates good impedance matching and efficient 

power transfer, which, in turn, improves antenna 

performance.  

The optimised bandwidth indicates a wider bandwidth that 

can operate effectively over a broader frequency range, 

making it versatile for a variety of applications. The 

optimised VSWR for a microstrip patch MIMO intelligent 

antenna is less than 2, which is acceptable. The efficiency of 

a system is measured by the ratio of the radiated power to the 

total input power. A higher efficiency indicates that the 

antenna is less lossy and can radiate more of the power that is 

fed into it. The optimised antenna demonstrated an efficiency 

of 90.08%, indicating a notable 

performance enhancement. 

Table 3 shows numerical  
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results for the evaluation parameters of the Microstrip Patch 

MIMO intelligent antenna in non-optimised and optimised 

scenarios. Overall, it is evident that there is a noticeable 

improvement of the optimized Microstrip Patch MIMO 

intelligent antenna in relation to non-optimized version.    

Table III: Numerical Results of the Evaluation Parameters of 

the Microstrip Patch MIMO Intelligent Antenna 

Parameter Values of a Non-

Optimised Antenna 

Values of Optimize 

Antenna 

Gain (dB) 3.501 9.136 

Directivity(dBi) 3.552 11.05 

S11 (dB) -20.2424 -28.042448 

BW (GHz) 3.1459 0.52909 

VSWR 1.5375576 1.0825024 

Efficiency (%) 83.74% 94.08% 

 

a. Reflection Coefficient (S11) - Non-Optimized Scenario 

 
a. Reflection Coefficient (S11) - Optimized Scenario 

 

 
b. Bandwidth- Non-Optimized Scenario 

 

b. Bandwidth- Optimized Scenario 

 

c. VSWR - Non-Optimized Scenario 

 
c. VSWR - Optimized Scenario 

 
d. Efficiency 

[Fig.10: Evaluating Parameters of the Microstrip Patch 

MIMO Intelligent Antenna in Optimized Scenario Using 

CST Toolbox] 

 

[Fig.11: The Predicted Results of the Link Budget 

Parameters] 

Figure 11 shows the predicted link budget parameters for 

the modified log-normal shadowing propagation model, with 

θ included in both non-optimised and optimised scenarios, 

using MATLAB. In the stratosphere, the HAP altitude is set 

to 20km above ground. PL predicted results of the log-normal 

shadowing model show values below the maximum allowable 

path loss (MAPL) value of 150dB. Indeed, the PL increases 

gradually as the footprint converges. The standard deviation 

of the log-normal random variable is called the shadowing 

margin.  

The shadowing margin is a measure of RSSI variability. 

Where the RSSI is aligned with PL predictions, it shows 

similar characteristics, with a peak value of -88 dBm. SNIR 

ranges between the upper and lower bounds of 6-25 dB. T 

falls with distance and with higher PL. Network footprint 

coverage is affected by transmitter and receiver antenna 

specifications, geomorphology, and a moderate θ of 15°. 

Therefore, the HAP convergence reaches 100km at a HAP 

altitude of 20 km.  

After optimisation, the predicted link budget results have 

shown a noticeable improvement. This suggests that the 

signal has become stronger,   

resulting. in better 

communication quality at all 

distances. Further, these 

improvements collectively 
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enhance the system's performance. Furthermore, optimized 

link budget results not only lead to better connectivity, but 

also strengthen power consumption, which enhance the IoE 

sensors and devices in sustainable smart city. 

To validate the performance of the proposed Microstrip 

Patch MIMO intelligent antenna from a power consumption 

perspective, the two QoS parameters (Eb/No and BER) are 

evaluated. Figure 12 shows a comparison of the predicted 

Eb/No and BER values of an Additive white Gaussian noise 

(AWGN) channel of the proposed Microstrip Patch MIMO 

intelligent antenna in non-optimised and optimised scenarios 

using the “semilogy” function in MATLAB.  

Evidently, the optimized scenario shows better Eb/No 

performance at the lowest BER achieved of  with 

around a 4dB difference. Another observed point is that as the 

Eb/No and BER values decrease, wireless link performance 

enhances. This means that a channel with low error rates is 

used, and minimum transmission power is used. Thanks to the 

optimized diversity gain and collaborative beamforming of 

the proposed Microstrip Patch MIMO intelligent antenna. 

This maximises link budget, capacity, and coverage without 

consuming more transmission power between the HAP and 

the ground IoE nodes.  

Bearing in mind that enhancing the power consumption of 

IoE nodes is an essential matter in the context of smart, 

sustainable cities. Optimizing how these devices sip, rather 

than guzzle, electricity is crucial for both sustainability and 

cost efficiency. The benefits of optimizing energy use in these 

complex ecosystems are manifold:  

▪ Less energy use equals a lower carbon footprint, 

aligning with global sustainability goals.  

▪ Extended IoE devices' lifetime, where batteries in 

remote sensors last longer, minimising maintenance and 

device replacements. 

▪ Cost savings via reducing energy bills for individuals 

and businesses, making IoE more accessible and 

attractive.  

▪ Economic optimization, where Smart energy grids and 

optimized resource allocation save city budgets and 

enable investments in other crucial areas like education 

and healthcare. 
 

 

[Fig.12: Qos Parameters of Eb/No and BER to Validate 

the Proposed Work] 

Figure 13 shows the Mean Squared Error (MSE) 

performance of the HFL model. The graph shows the training, 

testing, and validation process, with error rates gradually 

decreasing up to 43 iterations. Then, the training stops as the 

error rate increases. The achieved result seems rational, as no 

significant overfitting has occurred. Also, the ultimate MSE 

is low, and the test-set and validation-set errors are similar. 

 

[Fig.13: The MSE Performance of the HFL Model] 

V. CONCLUSION AND FUTURE WORK 

The future of smart, sustainable cities depends on 

leveraging 4IR technologies to build interconnected, data-

driven, and eco-efficient urban systems. Integrating IoE with 

intelligent MIMO antennas offers significant potential to 

enhance these cities. This study focuses on optimising energy 

efficiency in IoE devices by developing an intelligent 

microstrip patch MIMO antenna to improve HAPs’ wireless 

connectivity and power consumption using the HFL model. 

Simulations were performed in CST at 28 GHz, and 

MATLAB was used for HFL and validation through Eb/No 

and BER parameters. Results showed a 31% reduction in 

power use and improved last-mile connectivity. Future work 

will include real-world testing to compare simulated and 

experimental outcomes.  
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