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Gibbs Haversine Reinforcement Learning Based 

Handover For 5g Enabled Seamless Mobility in 

Wireless Network. 
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Abstract: Seamless Mobility (SM) is crucial for bringing about 

better Quality of Service (QoS), like minimum handover latency 

with maximum throughput in 5G networks. In this work, a method 

called Jenkin Impulse Response Filtering and Reinforcement 

Learning-based Gibbs Haversine Distribution (JIRF-RLGHD) is 

designed for the optimal selection of target cells in the handover 

process to ensure seamless mobility. The JIRF-RLGHD method is 

split into two sections. They are predicting the signal quality of 

both serving and adjacent wireless nodes using the Box-Jenkins 

Impulse Response Filtering model. The second task involves 

applying a Reinforcement Learning-based Gibbs Haversine 

Distribution for the optimal selection of target cells during 

handover, ensuring seamless mobility in a wireless network. The 

overall proposed method was simulated on a Python programming 

interface. The simulation results reveal that the JIRF-RLGHD 

method offers a higher delivery rate and handover success with 

lower handover latency at a minimal packet loss rate. Numerical 

results show that the JIRF-RLGHD method performs better in 

terms of data delivery rate by 18% and handover latency by 33% 

compared to existing methods.  

Keywords: Fifth Generation, Seamless Mobility, Quality of 

Service, Box Jenkins, Impulse Response Filter, Reinforcement 

Learning, Gibbs Haversine Distribution 

I. INTRODUCTION

Optimisation based on the distance (Opt. Distance) was

employed as the mechanism to ensure effectiveness and 

convenience with divergent mobility patterns based on the 

User Equipment (UE) state of affairs [1]. The areas that 

necessitated improvement were also analysed, and the tuning 

of network parameters was made accordingly. Moreover, by 

employing antenna gain and path loss models, service quality 

was enhanced in response to changes in network conditions 

and traffic patterns, requiring minimal human intervention. 

Finally, better user experiences were provided through a more 

efficient bandwidth allocation handover process in a 

significant manner. Despite improvements in allocating 

bandwidth with a better handover process, the delay, which is 

considered a critical performance factor, was not taken into 

consideration when designing divergent mobility patterns.  
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The 5G NR supports enhanced mobile broadband, low-

latency communications, and a large number of mobile 

devices. Hence, seamless mobility must be conserved during 

the migration process between cells during the handover 

procedure. However, with the increasing number of mobile 

devices, high mobility management of dense networks 

becomes pivotal. Additionally, an active adjustment is 

essential, as it crucially influences the handover latency and 

overall throughput.  

A Learning-based Intelligent Mobility Management 

(LIM2) was proposed in [2] for handling mobility 

management in 5G. Initially, a Kalman filter was applied to 

predict the future signal quality of both serving and adjacent 

cells, and an optimal selection of the target cell for the 

handover process was achieved using state-action-reward-

state-action-based reinforcement learning. Finally, a greedy 

policy was employed to trigger time, thereby ensuring high 

throughput and low packet delay. Although high throughput 

with low packet delay was assured, the latency was not 

optimised. Next-generation wireless cellular networks are 

envisioned to be self-coordinated, significant, and cost-

efficient. Due to the new 5G paradigm, several design issues 

arise, ranging from scalable mobility management to reliable 

resource management, ensuring seamless access to wireless 

services without compromising the anticipated Quality of 

Service (QoS). A control/data separation architecture was 

designed in [3] via stacked long short-term memory (LSTM). 

With this type of design, efficient separation between 

predictive and non-predictive cases was achieved through a 

holistic evaluation of handover costs, which in turn improved 

handover accuracy. An extensive number of base stations and 

associated sensors have been growing exponentially. This, in 

turn, had corresponding increased numerous types of 

mobility management issues, which necessitated an 

optimisation model to circumvent degradation of QoS. 

Machine learning (ML) is a promising approach for future 

wireless 5G networks. The robustness optimization technique 

was applied in [4] via key performance indicators ensuring 

system enhancements. In this day and age, information and 

communication technology extends swiftly. As a result, there 

is an improvement in both coverage and connectivity. On the 

other hand, the evolution of 5G has resulted in minimal 

communication latency, the highest speed, increased 

throughput, and more. In [5], essential and pivotal 

characteristics of 5G communication technology in addition 

to the drawbacks of prevailing methods were presented in 

detail.  
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A holistic review of seamless mobility management 

issues related to 5G was investigated in [6].  

The domain of seamless mobility encompasses health, 

surveillance, and transportation. A greedy pricing scheme 

was applied in [7] employing a column-generated solution to 

obtain the optimal solution for measuring the strategic 

behavior of travelers and ensuring seamless mobility. A 

detailed literature review, along with the exploration of 5G in 

different industries, was conducted in [8]. Additionally, an in-

depth review of the evolution and progress of wireless 

technology, with an emphasis on the significance of 5G 

networks, was presented. In recent years, healthcare has 

gained significant importance following the COVID-19 

pandemic, with a focus on providing robust solutions utilising 

5 G. The Prevailing radio access technology was improved in 

[9] to ensure quality of experience. Additionally, resource 

utilisation was improved by utilising a multi-agent 

reinforcement learning mechanism.  

A. Contributions 

Motivated by the above issues, like, handover latency, 

packet loss, data delivery rate, and success of handover for 

seamless mobility in wireless networks, in this work, a 

method called, Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine Distribution 

(JIRF-RLGHD) is designed using Jenkin Impulse Response 

Filtering and Reinforcement Learning-based Gibbs 

Haversine Distribution. The significant contributions of this 

work are pointed out below. 

▪ To present a significant method for designing seamless 

mobility in wireless networks by ensuring optimal 

handover called Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine 

Distribution (JIRF-RLGHD). 

▪ To design a convergence-efficient filtered signal (i.e., 

eliminating the noisy signal results), to minimize 

handover latency and packet loss using the Box-Jenkins 

Impulse Response Filtering algorithm applied to the raw 

traffic flows obtained from the IP Network Traffic 

Flows dataset 

▪ To propose a Reinforcement Learning-based Gibbs 

Haversine Distribution algorithm for optimally 

selecting target cells for performing handover, therefore 

ensuring seamless mobility in an accurate and precise 

manner.  

▪ Finally, the performance of the proposed JIRF-

RLGHD-based seamless mobility method for traffic 

flows is compared with the conventional state-of-the-art 

methods. 

B. Organization of the Work 

The rest of the paper is organised as follows. Section 2 

provides the related works on seamless mobility, handover, 

machine learning, and deep learning for network traffic 

flows. Section 3 presents a brief description of the seamless 

mobility for wireless networks, known as Jenkin Impulse 

Response Filtering and Reinforcement Learning-based Gibbs 

Haversine Distribution (JIRF-RLGHD). After that, Section 4 

provides experimental results, along with the corresponding 

implementation details in Section 5. Section 6 presents a 

detailed comparative study between the proposed JIRF-

RLGHD method and the other state-of-the-art methods with 

the aid of a table and graphical representation. Finally, 

Section 7 concludes the paper.  

II. RELATED WORKS 

The mobile industry is evolving and preparing to establish 

5G networks. The emerging 5G networks are becoming 

increasingly accessible as a powerful enabler of IoT devices. 

Moreover, 5G’s lightning-fast connection and low latency are 

essential for the evolution of intelligent automation, including 

Artificial Intelligence (AI), driverless cars, digital reality, and 

other applications. The evolution of 5G yet opens a state-of-

the-art world of probabilities for almost all areas of the 

domain.  

Mobility management is one of the paramount services 

that necessitate awareness for the present-day 5G 

organizations. Moreover, the QoS essentials in 5G wireless 

networks are user-specific. As far as seamless mobility in 5G 

wireless networks is concerned, network slicing has been 

considered as one of the key enablers for ensuring on-demand 

service schemes. In [10], radio resource access was 

concentrated on mobile roaming users. Additionally, an 

integrated architecture was designed to enable seamless 

handover between a 5G network and a network slicing 

paradigm. However, two significant issues — latency and 

bandwidth — were not addressed. To address these two 

aspects, Software Defined Networking (SDN) and Network 

Function Virtualization (NFV) were designed for 5G 

networks [11]. Here, seamless mobility management was 

designed to shift the paradigm between SDN and another in a 

5G network. Employing a distributed hash table resulted in a 

significant reduction in handover latency.  

With the mushrooming expansion of traffic load and 

associated devices in the wireless network, 5G should reliably 

minimise latency. Specifically, seamless mobility is highly 

required for attaining low handover latency. In [12], a 

generalized RACH-less handover method was presented for 

arriving at seamless mobility without the need for a 

synchronized network. Yet another holistic review of user 

localization equipment, along with standardized reference 

signals to ensure localization accuracy, was presented in [13]. 

A survey of handover optimization mechanisms was 

investigated in [14].  

The primary objective of 5G communication remains to 

bring a revolution in QoS (Quality of Service) through mobile 

broadband, low-latency, and reliable communication 

processes, as well as extensive communication between 

machines. In [15] a comprehensive survey of 5G 

communication networks for addressing routing-based 

interference was designed. A detailed study of the handover 

management to ensure seamless mobility in 5G was detailed 

in [16]. Additionally, specific performance metrics, such as 

throughput, delay, and traffic load, involved in the handover 

process were detailed. Moreover, the challenges involved in 

designing handover to counteract the attacks during handover 

were also presented. Seamless mobility management in 5G 

networks for massive wireless data from numerous 

application scenarios was 

presented in [17].  
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A regression model for seamless mobility deploying 

heterogeneous networks was designed in [18].  The evolution 

of the 5G wireless network, with its seamless mobility, has 

led the way to numerous advantages. However, it gave rise to 

new issues with the 5G wireless network, thereby making the 

prevailing methods for handling data obsolete. Due to this, 

research was conducted to explore deep learning methods in 

addressing issues in the 5G network.  

In [19] a survey of deep learning methods for addressing 

issues concerning 5G in wireless networks for seamless 

mobility was proposed. However, seamless mobility for 

complicated urban environments was still not a focus. To 

address this issue, a network-slicing strategy for machine 

communication was researched in [20]. 

Although machine learning methods have been widely 

used and applied in the area of seamless mobility with 5G, 

only a few researchers have endeavoured to utilise these 

methods. As discussed earlier, we will demonstrate that 

machine learning can be used to ensure seamless mobility 

with optimal handover in a 5G wireless network. 

III. MATERIALS AND METHODOLOGY  

A. Dataset description 

The proposed method utilises the IP Network Traffic 

Flows Labelled with 75 Apps dataset, extracted from 

https://www.kaggle.com/jsrojas/ip-networktraffic-flows-

labelled-with-87-apps, to facilitate seamless wireless network 

mobility in 5 G. The corresponding raw data were obtained 

both in the morning and afternoon over a six-day period in 

April and May 2017. The dataset comprises a total of 87 

features, with 3577296 instances gathered, accumulated, and 

stored in a CSV file. The sample instance comprises IP 

information flow, including the source and destination IP 

addresses, ports, inter-arrival times, and Layer 7 protocols. 

Numeric data types represent several features, but nominal 

data types are also included, along with the date types known 

as Timestamp. The features included in the dataset are source 

port, source IP, flow ID, flow duration, timestamp, 

destination IP, destination port, total forward and backwards 

packets, and the length of forward and backwards packets, 

respectively. The input vector for the corresponding IP 

Network Traffic Flows Labelled dataset is subjected to the 

input vector matrix as given below.  

𝐼𝑉 = [

𝑆1𝐹1 𝑆1𝐹2 … 𝑆1𝐹𝑛

𝑆2𝐹1 𝑆2𝐹2 … 𝑆2𝐹𝑛

… … … …
𝑆𝑚𝐹1 𝑆𝑚𝐹2 … 𝑆𝑚𝐹𝑛

]   (1) 

From the above formulation (1), the input vector ‘𝐼𝑉’ 

matrix includes ‘𝑚’ samples with ‘𝑛’ features as input with 

which further processing is said to be performed.  

B. Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine 

Distribution (JIRF-RLGHD)  

Seamless mobility refers to the potential to change the 

wireless node’s point of attachment to an IP-based network 

without losing track of ongoing connections (i.e., current 

connections) and without disruptions in communication (i.e., 

between current cells and adjacent cells). Seamless mobility 

management, with facilities for seamless handoff and QoS 

guarantees, is a crucial issue that significantly aids the global 

roaming of wireless nodes (WNs) between multiple wireless 

systems.  

As far as the 5G network is concerned, mobility is not 

only a physical postulation but also a logical one. It is hence 

pivotal to provide seamless mobility and QoS guarantee 

support stemming from intelligent and efficient mobility 

management mechanisms. To enable seamless mobility and 

QoS provision, a seamless handoff (i.e., minimal service 

disturbance in the course of handoff) is of considerable 

significance. Seamless handoff refers to minimal data packet 

loss, moderate handoff latency, and reasonable signalling 

traffic overhead. To align with proliferating projections and 

emerging requirements, 5G encompasses a wide range of 

performance-influencing characteristics.  

Evaluating the correlation between these influencing 

characteristics and validating every probability is a 

prerequisite for determining the constraints and issues that 

must be addressed to ensure 5G achieves its objectives. 

These, in addition, enable the accurate and precise pre-

selection of characteristics based on the needs before the 

network is deployed, which in turn results in the appropriate 

performance level. Nevertheless, while the association of 

several contributing characteristics leads the way to 5G 

organisation, accurately and precisely predicting 

performance based on all these associated characteristics 

remains a significant challenge in practice. To address this 

challenge, this work proposes a 5G model comprising five 

distinct modules. 

a. System model 

Let ‘𝑆𝑁’ be the serving node, ‘𝑇𝑁’ be the target node, and 

‘𝛼𝐼𝑆𝐷’ represents the Inter Site Distance between the serving 

node and the target node. Let the wireless node ‘𝑊𝑁’ be 

positioned at coordinates ‘(𝐴𝑖 , 𝐵𝑖)’ and supposed to progress 

in a straight line, making an angle of ‘𝛽’ for the ‘𝛼𝐼𝑆𝐷’ where 

‘𝛽 = 0°’ associates the straight line movement of the wireless 

node ‘𝑊𝑁Toward the target node. One of the pivotal digital 

framework building blocks for 5G includes microcells, 

picocells, and femtocells. As a substitute for restoring 

conventional macrocells, employing small cells (i.e., 

microcells, picocells, and femtocells) enhances this 

framework to improve both network coverage and capacity in 

densely populated areas. To provide targeted wireless 

network coverage and capacity, three types of cells —

femtocells, picocells, and microcells —are used. As the name 

implies, femtocells cover a diameter of up to 10 meters, 

picocells cover a diameter of up to 200 meters, whereas 

microcells cover a diameter of up to 2 km. In our work, 

picocells and microcells are employed to design seamless 

mobility patterns with minimal interference, utilising flow 

statistics and deep packet inspection of application layer 

protocol information obtained from the raw dataset for further 

processing. Figure 1, given below, illustrates the sample 

system model deployment for wireless network seamless 

mobility. 
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Fig. 1: System Model of Wireless Network Seamless Mobility 

As illustrated in the above figure, with the wireless node 

‘ 𝑊𝑁 ’ positioned at coordinates ‘ (𝐴𝑖 , 𝐵𝑖) The picocell is 

represented as ‘ (𝐴𝑃𝐶 , 𝐵𝑃𝐶) ’ whereas the microcell is 

represented as ‘(𝐴𝑀𝐶 , 𝐵𝑀𝐶 )’. The wireless node ‘𝑊𝑁 ’ is 

supposed to travel between the serving node ‘𝑆𝑁’ and target 

node ‘𝑇𝑁’ at a constant velocity and angle. At any instance, 

the wireless node ‘𝑊𝑁’ is considered to be at a distance 

‘𝛼𝑀𝑃 ’ from the microcell and ‘𝛼𝑃𝑀 ’ from the picocells. 

Finally, the Inter-Site Distance ‘𝛼𝐼𝑆𝐷’ represents the distance 

between two adjacent sites or adjacent nodes. Then, the 

distance between the wireless node ‘𝑊𝑁’ and ‘𝛼𝑀𝑃’ from the 

microcell and ‘ 𝛼𝑃𝑀 The picocells are mathematically 

formulated as given below.  

𝛼𝑀𝑃 = √(𝐴𝑖 − 𝐴𝑀𝑃)2 + (𝐵𝑖 − 𝐵𝑀𝑃)2  (2)

  

𝛼𝑃𝑀 = √(𝐴𝑖 − 𝐴𝑃𝑀)2 + (𝐵𝑖 − 𝐵𝑃𝑀)2  (3) 

From the above equations (2) and (3), ‘𝛼𝑀𝑃’ and ‘𝛼𝑃𝑀’ 

represents the location coordinates of macro pico 

‘(𝐴𝑀𝑃 , 𝐵𝑀𝑃)’ and picomacro ‘𝑃𝑖𝑐𝑜𝑀𝑎𝑐𝑟𝑜’ respectively.  

b. Box-Jenkins Impulse Response Filtering model 

Following this, with the above system model in 

consideration for predicting the future signal quality of both 

service and adjacent cells or nodes, this work applies a 

scalable and reliable impulse response filter modelling 

technique called Box-Jenkins Impulse Response Filtering. By 

applying this scalable and reliable impulse response filtering, 

a scalable and dependable link quality is ensured, which in 

turn not only reduces handover latency but also significantly 

minimises packet loss. Figure 2 shows the structure of the 

Box-Jenkins Impulse Response Filtering model. 

 

 

Fig. 2: Structure of Box-Jenkins Impulse Response Filtering Model 

As illustrated in the above figure, first, with the input 

vector matrix ‘𝐼𝑉’ obtained from the raw dataset ‘𝐷𝑆’, and 

location coordinates obtained, a scalable and reliable impulse 

response filter is designed. This formulation is generated in 

such a manner as to predict the 

future signal quality of 

‘ 𝑅𝑆𝑆𝐼[𝑛] ’ and the duration 
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below which ‘𝑅𝑆𝑆𝐼[𝑛]The threshold remains a mathematical 

statement as given below.  

𝑅𝑆𝑆𝐼𝑝𝑟𝑒𝑑[𝑛] = ∑ ℎ𝑛[𝑙]𝑅𝑆𝑆𝐼[𝑛 − 𝑙]𝑀
𝑙=1 (𝐼𝑉)  (4) 

From the above equation (4), ‘𝑀’ refers to the number of 

data packets necessary for prediction, whereas ‘𝑅𝑆𝑆𝐼[𝑛 − 1]’ 
refers to the measured RSSI value at time ‘𝑛 − 1’ and ‘ℎ𝑛[𝑙]’ 
represents the ‘𝑙 − 𝑡ℎ’ coefficient of the filter for ‘𝑛 − 𝑡ℎ’ 

round respectively. Additionally, the filter coefficient values 

are updated arbitrarily, and the updated link quality estimate 

results are then mathematically stated as follows.  

𝑅𝑆𝑆𝐼(𝑛) = 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛 + 1] = 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛] +
𝛾(𝑅𝑆𝑆𝐼[𝑛] − 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛])                                (5) 

From the above equation results (5) using the filter 

coefficient values ‘0 < 𝛾 < 1’ the predicted RSSI value for 

‘ 𝑛 + 1 ’ determines the anticipated error between the 

predicted RSSI and the actual RSSI values, hence taking into 

consideration both the service and adjacent cells or nodes. 

With this improved future signal quality, results are achieved, 

thereby significantly minimising handover latency and data 

packet loss rate. The output ‘𝑦(𝑛)’ From the above-updated 

link quality, the estimate remains an additive sum of the 

signal ‘𝑅𝑆𝑆𝐼(𝑛)’ disturbance ‘𝐷𝑖𝑠(𝑛)’ The noise measured 

‘𝑣(𝑛)’. This is mathematically stated as given below.  

𝑦(𝑛) = 𝑅𝑆𝑆𝐼(𝑛) + 𝐷𝑖𝑠(𝑛) + 𝑣(𝑛)   (6) 

𝑅𝑆𝑆𝐼(𝑛) = 𝐺𝑅𝑆𝑆𝐼(𝑛) + 𝐼𝑉(𝑛)   (7) 

𝐷𝑖𝑠(𝑛) = 𝐺𝑤(𝑛)𝑤(𝑛)    (8) 

From the above equations (6), (7), and (8), the signal 

‘𝑅𝑆𝑆𝐼(𝑛)’ and the disturbance ‘𝐷𝑖𝑠(𝑛)Models are obtained 

taking into consideration the sample input vector.𝐼𝑉(𝑛) ’, 

white noise ‘𝑤(𝑛)’, transfer matrix or order ‘𝑛𝑅𝑆𝑆𝐼’ and ‘𝑛𝑤’ 

respectively. Finally, using the Box-Jenkins function, an 

efficient mathematical model that forecasts the signal quality 

is obtained from the following formula as given below.  

𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛) = 𝐷𝑤(𝑛)𝑁𝑅𝑆𝑆𝐼 𝑤 (𝑛)𝐼𝑉(𝑛) + 𝜖(𝑛)  (9) 

𝐷 𝑤(𝑛) = 𝐷𝑅𝑆𝑆𝐼(𝑛)𝐷𝑤(𝑛)    (10) 

𝑁𝑅𝑆𝑆𝐼 𝑤 (𝑛) = 𝐷𝑤(𝑛)𝑁𝑅𝑆𝑆𝐼(𝑛)    (11) 

From the above equations (9), (10), and (11), future signal 

forecasting results are predicted based on the 

denominator. 𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛) ’ and numerator ‘ 𝑁𝑅𝑆𝑆𝐼 𝑤 (𝑛) ’ 

polynomials. The pseudo-code representation of Box-Jenkins 

Impulse Response Filtering for generating scalable and 

reliable filters is given below.  
Input: Dataset ‘𝐷𝑆’, Samples ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚}’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑛}’, Data packets ‘𝐷𝑃 = {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑀}’ 

Output: filtered signal results ‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ with minimal handover latency and packet loss  

Step 1: Initialize ‘𝑚 = 3557297 ’, ‘𝑛 = 87’, serving node ‘𝑆𝑁’, target node ‘𝑇𝑁’, ‘𝑀’, coefficient ‘0 < 𝛾 < 1’ 

Step 2: Begin  

Step 3: For each Dataset ‘𝐷𝑆’ with Samples ‘𝑆’ and Features ‘𝐹’ 

Step 4: Formulate the input vector matrix as given in equation (1) 

Step 5: Formulate distance between wireless node ‘𝑊𝑁’ and ‘𝛼𝑀𝑃’ from the microcell as given in equation (2) 

Step 6: Formulate distance between wireless node ‘𝑊𝑁’ and ‘𝛼𝑃𝑀’ from the picocells as given in equation (3) 

Step 7: Evaluate link quality as given in equation (4) 
Step 8: Evaluate updated link quality estimate results as given in equation (5) 

Step 9: If ‘𝑅𝑆𝑆𝐼[𝑛] − 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛] 𝑎𝑟𝑒 ℎ𝑖𝑔ℎ𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑’  

Step 10: Then, the predicted signal results are correct and make ‘𝛾’ purposefully small  

Step 11: Return predicted future signal quality  

Step 12: End if  

Step 13: If ‘𝑅𝑆𝑆𝐼[𝑛] − 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛] 𝑎𝑟𝑒 𝑙𝑒𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑’  

Step 14: Then, the predicted signal results are not correct and make ‘𝛾’ purposefully large  

Step 15: Go to step 5 

Step 16: End if  

Step 17: Evaluate signal and output error as given in equations (6), (7) and (8) 

Step 18: Formulate the Box-Jenkins function to the evaluated signal and output error to predict signal quality results as given in equations (9), (10) 

and (11) 
Step 19: End for 

Step 20: End  

Algorithm-1: Scalable and Reliable Impulse Response Filter 

As outlined in the above algorithm, which aims to 

minimise both handover latency and packet loss, a scalable 

and reliable impulse response filter is applied. First, with the 

raw data obtained from the dataset and formulated as an input 

vector matrix, the distance between the wireless node and the 

microcell is initially measured. Second, the list quality is 

estimated for each round with different numbers of data 

packets and time instances. Third, according to the updated 

link quality estimates, filter coefficient values are updated 

arbitrarily. Finally, according to the correlated results, 

predicted future signal quality is either returned or proceeds 

with other sets of data. With the predicted future signal 

quality results, the signal and the output error are evaluated. 

From the identified results, minimal realisations of the signal, 

the disturbance, and the filter are obtained using the Box-

Jenkins function, which not only minimises the handover 

latency but also significantly reduces the packet loss rate.  

c. Reinforcement Learning-based Gibbs Haversine 

Distribution for optimal selection of the target cell for the 

handover process to ensure seamless mobility  

Handover enhancements were explored to handle 

frequent handovers owing to seamless mobility in wireless 

networks. Therefore, the major problem of handover towards 

seamless mobility was the signalling storm generated by 

handing over all wireless nodes in a wireless network from an 

old cell to a new cell, because when a wireless node intersects 

the boundary between the serving and adjacent cells, 

handover occurs.  

With this frequent handover, the data delivery rate and, 

consequently, the success of the handover are compromised. 

To address this issue, in this work, a Reinforcement Learning-

based Gibbs Haversine 

Distribution for optimal 

selection of target cells for the 

handover process to ensure 
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seamless mobility is designed. Figure 3 shows the structure 

of the Reinforcement Learning-based Gibbs Haversine 

Distribution model. 

 

Fig. 3: Structure of Reinforcement Learning-based Gibbs Haversine Distribution Model 

As illustrated in the above figure, the environment state is 

assessed based on the handover optimization costs (e.g., too 

late handovers and too early handovers). Accordingly, it 

selects an action to optimise handover parameters (e.g., Time 

To Trigger (TTT) and Cell Individual Offsets (CIO)) in 

harmony with the measured state by employing prior 

knowledge (i.e., from the impulse response filter). 

The knowledge is updated based on optimization costs to 

reflect the optimal selection of target cells for the handover 

process. To fine-tune mobility between cells ‘ 𝑖 ’ and cell 

‘𝑗The optimal selection of the target cell for the handover 

process includes four features: the environment state.𝑒𝑠𝑖𝑗 ∈

𝐸𝑆’, action ‘𝑎𝑖𝑗 ∈ 𝐴(𝐸𝑆𝑖𝑗)’, dataset ‘𝐷𝑆(𝑎𝑖𝑗)’ that provides 

the belief distribution of optimal features and cost function 

‘𝐶𝑖𝑗’ that considers the quality of an action in a given state, 

respectively.  

The proposed algorithm selects the optimal 

action.𝐴(𝐸𝑆𝑖𝑗)’ to reduce handover cost (i.e., maximising 

data delivery rate and success of handover) based on 

optimisation costs. Environment state ‘𝑒𝑠𝑖𝑗 ∈ 𝐸𝑆’ is sensed 

based on the handover to reduce unwanted handovers. The 

environment state ‘ 𝑒𝑠𝑖𝑗 =

(𝐸𝑆𝐶𝐼𝑂+, 𝐸𝑆𝐶𝐼𝑂− , 𝐸𝑆𝑇𝑇𝑇+, 𝐸𝑆𝑇𝑇𝑇−)’ that refers to the increase 

in CIO, decrease in CIO, increase in TTT, and decrease in 

TTT respectively, from their prevailing values, to control 

both too late and too early handover, therefore ensuring 

seamless mobility extensively. Following this, the action 

‘𝐴𝑖𝑗 ∈ 𝐴(𝐸𝑆𝑖𝑗)’ fine-tunes the resultant ‘𝐶𝐼𝑂 ’ and ‘𝑇𝑇𝑇 ’ 

Values to reduce unwanted handovers as claimed by the 

current state ‘𝐸𝑆𝑖𝑗’ via Haversine function. Hence, the action 

‘𝐴(𝐸𝑆𝑖𝑗) ’ is set to change based on the state ‘𝐸𝑆𝑖𝑗 ’ via 

Harvard sine function. 

 𝜃 =
𝐷𝑖𝑠

𝑅𝑎𝑑𝑖𝑢𝑠
     (12) 

From the above equation (12), ‘𝐷𝑖𝑠’ and ‘𝑅𝑎𝑑𝑖𝑢𝑠Refer to 

the distance and radius between two wireless nodes on a 

sphere. Finally, the fine-tuned results are obtained by 

measuring the haversine of ‘ 𝜃 ’ from the latitude and 

longitude of two points as given below.  

𝐻𝑎𝑣(𝜃) = 𝐻𝑎𝑣(𝛼1 − 𝛼2) + cos 𝛼1 cos 𝛼2 (𝛽1 − 𝛽2)   (13) 

From the above equation (13), ‘𝛼1’ and ‘𝛼2’ represents 

the latitude of the wireless node ‘𝑊𝑁𝑖’ and the latitude of the 

wireless node ‘𝑊𝑁𝑗’, ‘𝛽1’ and ‘𝛽2’ representing the longitude 

of the wireless node ‘𝑊𝑁𝑖’ and the latitude of the wireless 

node ‘𝑊𝑁𝑗’ respectively. Based on the latitude and longitude 

of the serving and adjacent nodes for the fine-tuned Haversine 

results, a greedy strategy for optimal action is selected as 

follows.  
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𝐴𝑖𝑗
′ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑄(𝐴𝑖𝑗)[𝐻𝑎𝑣(𝜃)]  (14) 

Finally, the cost function reflects the quality of action in a 

given state, taking into account too-late handovers and too-

early handovers between serving cells (i.e., a wireless 

node).𝑊𝑁𝑖’ and adjacent cell (i.e., a wireless node) ‘𝑊𝑁𝑗’ are 

mathematically stated as given below.  

𝑅𝐿𝑖𝑗 =
𝑁𝑇𝑜𝑜𝐿𝑎𝑡𝑒𝑖𝑗

𝑁𝑇𝑜𝑡𝑖𝑗
; 𝑅𝐸𝑖𝑗 =

𝑁𝑇𝑜𝑜𝐸𝑎𝑟𝑙𝑦𝑖𝑗

𝑁𝑇𝑜𝑡𝑖𝑗
 ;  𝑅𝑖𝑗 = 𝑅𝐿𝑖𝑗 + 𝑅𝐸𝑖𝑗    (15) 

From the above equation (15), the reinforced cost function 

‘𝑅𝑖𝑗’ between serving cell (i.e., a wireless node) ‘𝑊𝑁𝑖’ and 

adjacent cell (i.e., a wireless node) ‘𝑊𝑁𝑗’ are obtained based 

on the reinforced too-late handovers ‘𝑅𝐿𝑖𝑗 ’ and too early 

handovers ‘𝑅𝐸𝑖𝑗’ respectively. Finally, the haversine function 

‘ ℎ𝑎𝑣(𝜃) ’ is applied to both the central angle and the 

differences in latitude and longitude to obtain the optimal 

selection as given below.  

ℎ𝑎𝑣(𝜃) = 𝑆𝑖𝑛2 (
𝜃

2
) [𝑅𝑖𝑗]    (16) 

With the above haversine-induced reinforced cost 

function results ‘ℎ𝑎𝑣(𝜃)As given in Equation (16), the Gibbs 

probability distribution function is applied to select higher-

probability results, ensuring a better handover towards 

seamless mobility. This is mathematically stated as given 

below.  

𝑃𝑟𝑜𝑏(𝑒𝑠𝑖𝑗 , 𝐴𝑖𝑗
′ ) =

exp[−
𝜃(𝑎𝑖𝑗

′ )

𝜏
]

∑ exp[−
𝜃(𝑏𝑖𝑗

′ )

𝜏
]

𝑏𝑖𝑗
′ ∈𝐴(𝐸𝑆𝑖𝑗)

 17) 

From the above equation (17), the probability of taking an 

action (i.e., selecting a target cell for the handover process) is 

measured based on the Gibbs function and the probability 

results. Higher probability results are chosen over the lower 

probability results. In our work, ‘𝜏’ refers to the positive 

parameter called time to trigger ‘ 𝑇𝑇𝑇 ’. A higher ‘𝑇𝑇𝑇 ’ 

causes the actions to have a more equal probability. On the 

other hand, a lower temperature leads to a greater difference 

in the selection probability for actions, which stimulates 

making use of prior knowledge. The pseudo-code 

representation of the Reinforcement Learning-based Gibbs 

Haversine Distribution for the optimal selection of target cells 

in the handover process, ensuring seamless mobility, is 

provided below. 

 
Input: Dataset ‘𝐷𝑆’, Samples ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚}’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑛}’, Data packets ‘𝐷𝑃 = {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑀}’ 

Output: delivery improved optimal target cell or wireless node selection  

Step 1: Initializepredicted filtered signal results ‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with Samples ‘𝑆’, Features ‘𝐹’ and predicted filtered signal results ‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ 

//Environment  

Step 4: Formulate environment based on the increase in CIO, decrease in CIO, increase in TTT and decrease in TTT  

//Action  
Step 5: Apply the Haversine function from the latitude and longitude of two points as given in equations (12) and (13) 

Step 6: Evaluate greedy strategy-based optimal action as given in equation (14) 

//Cost evaluation  
Step 7: Formulate the cost function as given in equation (15) 

Step 8: Apply the haversine function to obtain the optimal selection as given in equation (16) 

Step 9: Formulate the Gibbs probability distribution function to select higher probability results as given in equation (17) 
Step 10: End for  

Step 11: End 

Algorithm-2: Reinforcement Learning-based Gibbs Haversine Distribution 

As outlined in the above algorithm, to ensure optimal 

handover and thereby significantly improve the data delivery 

rate, the Gibbs-Haversine Distribution function is applied to 

the Reinforcement Machine Learning model. First, the 

predicted filtered signal results are subjected to the given 

environment based on four environment states: an increase in 

CIO, a decrease in CIO, an increase in TTT, and a reduction 

in TTT, respectively. Second, a greedy strategy-based 

optimal action is taken using the Haversine function, which 

considers the latitude and longitude of two points (i.e., 

serving nodes and adjacent nodes). By applying this greedy 

strategy-based optimal action, the cost function is formulated, 

and following which the Gibbs probability distribution 

function results in higher probabilities. This, in turn, 

improves handover success, thereby significantly increasing 

the data delivery rate.  

IV. EXPERIMENTAL SETUP  

The proposed Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine Distribution 

(JIRF-RLGHD) method for the handover process to ensure 

seamless mobility, along with the conventional method, 

optimization based on the distance (Opt. Distance) [1] and 

Learning-based Intelligent Mobility Management (LIM2) [2] 

is implemented in Python, a high-level general-purpose 

programming language, for fair comparison, samples 

obtained from the IP Network Traffic Flows Labelled with 75 

Apps dataset [https://www.kaggle.com/jsrojas/ip-

networktraffic-flows-labeled-with-87-apps] are used to 

handle the simulation for all three methods. Additionally, the 

results are evaluated based on performance metrics, including 

handover latency, packet loss, data delivery rate, and the 

success of the handover. Additionally, for evaluation 

purposes, the maximum number of samples is set at 10,000, 

and the maximum data packet size is considered to be 1.5 

MB. The performance of the JIRF-RLGHD method is 

compared with the other competing methods, Opt. Distance 

[1] and LIM2 [2] and evaluated. 

V. IMPLEMENTATION DETAILS  

In this study, we developed a machine learning-based 

handover method for 5G-enabled seamless mobility in 

wireless networks, called Jenkin Impulse Response Filtering 

and Reinforcement Learning-based Gibbs Haversine 

Distribution (JIRF-RLGHD), which achieves low packet 

loss, reduced handover latency, and improved data delivery 

and handover success rates.  
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▪ The JIRF-RLGHD method comprises two sections, 

namely, future signal quality prediction and optimal 

handover process.  

▪ The JIRF-RLGHD method is compared with two 

existing methods, optimization based on the distance 

(Opt. Distance) [1] and Learning-based Intelligent 

Mobility Management (LIM2) [2] using IP Network 

Traffic Flows Labeled with 75 Apps dataset to validate 

the results.  

▪ Initially, the network traffic flows were obtained from 

the input dataset. 

▪ In the first part, the Box Jenkins Impulse Response 

Filtering model is employed to initially measure the 

distance between the wireless nodes, microcells, and 

picocells, respectively. Next, with the aid of RSSI, the 

link quality is estimated, and updates are made 

according to the threshold to smooth the prediction of 

future signal quality. Finally, the Box-Jenkins function 

is applied to forecast the signal quality, thereby 

corroborating the objectives of scalability and 

reliability.  

▪ Second, with the predicted future signal quality taking 

into consideration both the servicing node and the 

adjacent nodes, the Reinforcement Learning-based 

Gibbs Haversine Distribution algorithm is applied to 

ensure robust and smooth handover, therefore providing 

seamless mobility. 

According to the above implementation patterns, four 

different evaluation metrics are detailed in the next section.  

VI. RESULTS AND DISCUSSION  

In this section, the results are evaluated based on 

performance metrics, including handover latency, packet loss 

rate, data delivery rate, and handover success rate. 

Additionally, for evaluation purposes, the maximum number 

of samples is set at 10000. The performance of JIRF-RLGHD 

is compared with the other competing methods, Opt. Distance 

[1] and LIM2 [2]. A simulation of 10 runs is performed.  

A. Performance of Handover Latency 

Handover latency refers to the delay that happens between 

when a user takes an action on a network and when it reaches 

its destination. It is measured in milliseconds. To be more 

specific, handover latency is defined as the difference in time 

consumed in discovering the new cell in a wireless network 

and the serving cell in the same network, respectively. 

Handover latency is measured by taking into consideration 

the time of WN in the new cell and the time of WN in the old 

cell. This is mathematically formulated as given below. 

 𝐻𝑂𝐿 = 𝑊𝑁𝑁𝑒𝑤𝐶𝑒𝑙𝑙 − 𝑊𝑁𝑂𝑙𝑑𝐶𝑒𝑙𝑙    (18) 

From the above equation (18), the handover latency 

‘𝐻𝑂𝐿’ is measured based on the time of WN in the new cell 

‘𝑊𝑁𝑁𝑒𝑤𝐶𝑒𝑙𝑙’ and the old cell ‘𝑊𝑁𝑂𝑙𝑑𝐶𝑒𝑙𝑙’ respectively. It is 

measured in terms of milliseconds (ms). Table 1, presented 

below, compares the handover latency using the three 

methods.  

Table 1: Handover Latency Comparison Using Three Methods, JIRF-RLGHD, Opt. Distance [1] and LIM2 [2] 

Methods Handover latency (without filter) Handover latency (with filter) 

JIRF-RLGHD 0.15 0.10 

Opt. Distance [1] 0.28 0.20 

LIM2 [2] 0.35 0.25 

 

Fig. 4: Simulation Results of Handover Latency 

Figure 4, shown above, illustrates the graphical 

representation of handover latency using the proposed 

method, JIRF-RLGHD, and the existing process, Opt. 

Distance [1] and LIM2 [2] respectively. To validate the 

handover latency, results were obtained both with and 

without a filter mechanism in place. From the above 

figurative representation, the handover latency with a filter 

was found to be comparatively reduced than without a filter. 

With 10,000 samples used, the handover latency without a 

filter, using the proposed method,  

was found to be 0.15 ms, 

whereas it was 0.10 ms when 

applied with a filter. Similarly, 

Opt.  

0 0.1 0.2 0.3 0.4

JIRF-RLGHD

Opt. Distance [1]

LIM2 [2]

Handover latency (with

filter)

Handover latency (without

filter)
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Distance [1] observed a handover latency of 0.28ms 

(without filter) and 0.20ms (with filter) and the LIM2 [2] 

method observed a handover latency of 0.35ms (without 

filter) and 0.25ms (with filter). The reason behind the 

improvement was the application of the Box-Jenkins Impulse 

Response Filtering algorithm for the JIRF-RLGHD method. 

By applying this algorithm, raw sample traffic flow data was 

subjected to designing seamless mobility via an input vector 

matrix. With the available data, the distance between the 

wireless node and the microcell and picocells was measured. 

Following this, the link quality was evaluated for different 

numbers of data packets, which in turn improved the 

scalability of the handover process. Finally, based on the 

evaluation of the updated link quality filter, the coefficients 

were updated randomly. This, in turn, improved the handover 

latency using the JIRF-RLGHD method by 33% upon 

comparison to [1] and 35% upon comparison to [2]. 

B. Performance of Packet Loss Rate and Data 

Delivery Rate  

Packet loss rate refers to the number of data packets lost 

during transmission and is evaluated as follows.  

 𝑃𝐿 =
𝐷𝑃𝑙𝑜𝑠𝑡

𝐷𝑃𝑠𝑒𝑛𝑡
∗ 100    (19) 

From the above equation (19), the packet loss rate ‘𝑃𝐿’ is 

measured based on the data packet sent ‘𝐷𝑃𝑠𝑒𝑛𝑡’ and the data 

packet lost ‘𝐷𝑃𝑙𝑜𝑠𝑡’. It is measured in terms of percentage 

(%). The data delivery rate is calculated as the percentage 

ratio of data packets that were efficiently delivered from the 

service node. This is mathematically stated as given below.  

 𝐷𝐷 =
𝐷𝑃𝑅𝐶

𝐷𝑃𝑆𝑁
∗ 100     (20) 

From the above equation (20), the data delivery rate ‘𝐷𝐷’ 

is measured by taking into consideration the data packets sent 

from the serving node ‘𝐷𝑃𝑆𝑁’ and the data packets received 

correctly ‘𝐷𝑃𝑅𝐶’. It is measured in terms of percentage (%). 

Table 2, presented below, compares packet loss and data 

delivery rates using the three methods.  

Table 2: Packet Loss and Data Delivery Rate Comparison Using Three Methods, JIRF-RLGHD, Opt. Distance [1] 

and LIM2 [2] 

Methods Packet loss (%) Data delivery rate (%)  

JIRF-RLGHD 3.25 96.75 

Opt. Distance [1] 4.40 96 

LIM2 [2] 4.85 95.15 

 

Fig. 5: Simulation Results of Data Delivery Rate and Packet Loss 

Figure 5, given above, illustrates the data delivery rate and 

packet loss using the proposed JIRF-RLGHD and existing 

methods, Opt—distance [1] and LIM2 [2]. While performing 

the process of seamless mobility, a certain amount of packet 

loss is said to occur during handover, resulting in a significant 

compromise in data delivery rate. However, simulations 

performed with 10000 sample traffic flows observed data 

packet loss of 325, 440, and 485 using the three methods. 

With this, the overall packet loss rates were found to be 

3.25%, 4.40%, and 4.85% using JIRF-RLGHD and Opt. 

Distance [1] and LIM2 [2]respectively. Similarly, the data 

delivery rates were observed to be 96.75%, 93%, and 91.15% 

using JIRF-RLGHD and Opt. Distance [1] and LIM2 

[2]respectively. From these results, the packet loss and data 

delivery rate were observed to be comparatively lower using 

the JIRF-RLGHD method upon comparison to [1] and [2]. 

The reason behind the minimisation of packet loss and 

maximisation of data delivery rate was due to the application 

of the Reinforcement Learning-based Gibbs Haversine 

Distribution algorithm. By applying this algorithm, the 

predicted filtered signals were subjected to four distinct 

environment states. Following this, a greedy strategy-based 

optimal action employing the Haversine function, 

considering both the latitude and longitude of both serving 

nodes and adjacent nodes, was used.  

This, in turn, reduced the packet loss considerably using 

the JIRF-RLGHD method by an average of 18% upon 

comparison to [1] and [2]. 

Additionally, a greedy 

strategy-based optimal action, 

employing the Gibbs 

probability distribution 
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function, was applied to achieve higher probability results 

that evolved with better handover. This, in turn, improved the 

data delivery rate using the JIRF-RLGHD method by an 

average of 3% upon comparison to [1] and [2], ensuring 

reliability to a greater extent. 

C. Performance of Handover Success Rate 

The success of a handover or handover success rate refers 

to the rate of successfully transferring an ongoing call or data 

session from one channel to another in a wireless network. 

The formula for measuring the handover success rate is 

mathematically formulated as given below. 

𝐻𝑂𝑆𝑅 =
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂+𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑜)

(𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂+𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑂)
∗ 100  (21) 

From the above equation (21), the handover success rate 

‘𝐻𝑂𝑆𝑅’ is measured taking into consideration the successful 

inter-cell handover ‘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂’ Successful intra-cell 

handover ‘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑜’, attempted inter-cell handover 

‘𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂’ and the attempted intra-cell handover 

‘𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑂’ respectively. It is measured in terms of 

percentage (%). Finally, Table 3, given below, provides the 

handover success rate using the three methods.  

Table 3: Handover Success Rate Comparison Using Three Methods, JIRF-RLGHD, Opt. Distance [1] and LIM2 [2] 

Methods Handover success rate (without optimal distribution) (%) Handover success rate (with optimal distribution) (%) 

JIRF-RLGHD 85.35 92.15 

Opt. Distance [1] 80.15 83.55 

LIM2 [2] 75.25 85.45 

 

Fig. 6: Simulation Results of Handover Success Rate Using JIRF-RLGHD, Opt. Distance [1] and LIM2 [2] 

Figure 6, given above, shows the handover success rate 

for an average of 10,000 network traffic flows using the three 

methods: JIRF-RLGHD and Opt. Distance [1] and LIM2 [2]. 

The handover success rate, as illustrated in the above figure, 

involves validation analysis both with and without optimal 

distribution. By performing optimal distribution, the 

handover success rate using the three methods JIRF-RLGHD 

and Opt. Distance [1] and LIM2 [2] were observed to be 

92.15%, 83.55%, and 85.45%, respectively. Similarly, 

without the application of optimal distribution, the handover 

success rates were found to be 85.35%, 80.15%, and 75.25%, 

respectively. With this, the handover success rate using the 

JIRF-RLGHD method was found to be comparatively better 

than [1] and [2]. The reason behind the improvement was due 

to the application of the Reinforcement Learning-based Gibbs 

Haversine Distribution algorithm. By applying this 

algorithm, the Gibbs Haversine Distribution function was 

applied to the Reinforcement Machine Learning model. 

Additionally, a greedy strategy-based optimal action 

evolution model was employed, which in turn improved both 

successful inter-cell handovers and intra-cell handovers. 

With this, both the scalability and reliability of seamless 

mobility in wireless networks are said to be ensured using the 

JIRF-RLGHD method. 

Table 4: Overall Comparative Analysis of Proposed And Existing Methods 

Metrics/Methods  JIRF-RLGHD Opt. Distance [1] LIM2 [2] 

Handover latency (without filter) (ms) 0.15 0.28 0.35 

Handover latency (with filter) (ms) 0.10 0.20 0.25 

Packet loss (%) 3.25 4.40 4.85 

Data delivery rate (%) 96.75 96 95.15 

Handover success rate (without optimal distribution) (%) 85.35 80.15 75.25 

Handover success rate (with optimal distribution) (%) 92.15 83.55 85.45 

Table 4 presents an overall comparative analysis of 

various methods, including JIRF-RLGHD and Opt. Distance 

[1] and LIM2 [2] to ensure seamless mobility in wireless 

networks.  The performance of proposed and existing 

methods is evaluated in terms of four key metrics: handover 

latency, packet loss, data delivery rate, and handover success 

rate. As observed from the above figure, the proposed JIRF-

RLGHD method outperformed the  

existing Opt. Distance [1] and  

LIM2 [2] methods. The 

handover latency of the JIRF-

RLGHD method is obtained as 
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0.15 ms without using a filter, whereas a 0.10 ms handover 

latency is obtained for the JIRF-RLGHD method with a filter. 

Also, the data delivery rate is achieved as 96.75% for the 

JIRF-RLGHD method, whereas 96% and 95.15% are 

achieved for existing [1] and [2]. In addition, the Handover 

success rate is achieved as 92.15%, 83.55%, and 85.45% for 

JIRF-RLGHD, existing [1] and [2] respectively with optimal 

distribution whereas 85.35%, 80.15%, and 75.25% for 

without optimal distribution. From the above results, it is 

inferred that the performance of the proposed JIRF-RLGHD 

method is found to be better than that of the state-of-the-art 

methods. The Box-Jenkins Impulse Response Filtering 

algorithm is used in JIRF-RLGHD to get a convergence-

efficient filtered signal. With this, noisy signals are 

eliminated, and handover latency and packet loss are 

minimised. In addition, the target cell is chosen optimally 

using a Reinforcement Learning-based Gibbs Haversine 

Distribution algorithm to carry out the handover with 

minimum latency and a higher success rate than conventional 

methods. 

VII. CONCLUSION  

In this study, a Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine Distribution 

(JIRF-RLGHD) method is proposed for seamless mobility in 

a 5G wireless network, aiming to achieve low packet loss and 

a high handover success rate. The future signal quality of both 

serving and adjacent cells is predicted in a computationally 

efficient manner employing the Box-Jenkins Impulse 

Response Filtering algorithm. Here, a combination of updated 

link quality estimates based on the distance factor and the 

Box-Jenkins function was applied to the raw traffic signals to 

obtain probable signal results. Second, with the obtained 

probable signal results, the Reinforcement Learning-based 

Gibbs Haversine Distribution algorithm was employed to 

ensure optimal target cell selection, thereby providing a 

reliable and scalable handover process. The IP Network 

Traffic Flows Labelled with 75 Apps dataset was utilised for 

the experimental assessment, and the results were also 

compared with those of conventional state-of-the-art 

methods. The proposed CS-AGNN method performs better 

overall in terms of execution time, key storage cost, and 

throughput.  

DECLARATION STATEMENT 

Funding No, I did not receive. 

Conflicts of Interest 
No conflicts of interest to the best of our 

knowledge. 

Ethical Approval and 

Consent to Participate 

No, the article does not require ethical 

approval or consent to participate, as it 

presents evidence. 

 Availability of Data 

and Materials 
Not relevant. 

Authors Contributions 
All authors have equal participation in this 

article. 

REFERENCES  

1. Wasan Kadhim Saad, Ibraheem Shayea, Abdulraqeb Alhammadi, 

Muntasir Mohammad Sheikh, Ayman A. El-Saleh, “Handover and load 

balancing self-optimisation models in 5G mobile networks”, 
Engineering Science and Technology, an International Journal, Elsevier, 

Apr 2023 [optimization based on the distance (Opt. Distance)] 

2. Raja Karmakar, Georges Kaddoum, Samiran Chattopadhyay, “Mobility 
Management in 5G and Beyond: A Novel Smart Handover with 

Adaptive Time-to-Trigger and Hysteresis Margin”, IEEE Transactions 

on Mobile Computing, Oct 2023 [Learning-based Intelligent Mobility 
Management (LIM2)] https://doi.org/10.1109/TMC.2022.3188212 

3. Metin Ozturka, Mandar Gogate, Oluwakayode Onireti, Ahsan Adeel, 

Amir Hussain, Muhammad A. Imran, “A novel deep learning driven, 
low-cost mobility prediction approach for 5G cellular networks: The 

case of the Control/Data Separation Architecture (CDSA)”, 

Neurocomputing, Elsevier, Jan 2019 
https://doi.org/10.1016/j.neucom.2019.01.031 

4. Waheeb Tashan, Ibraheem Shayea, Sultan Aldirmaz-Çolak, Omar 

Abdul Aziz, Abdulraqeb Alhammadi, Yousef Ibrahim Daradkeh, 
“Advanced Mobility Robustness Optimization Models in Future Mobile 

Networks Based on Machine Learning Solutions”, IEEE Vehicular 

Technology Society Section, Oct 2022 
https://doi.org/10.1109/ACCESS.2022.3215684 

5. Lalita Mishra, Vikash, Shirshu Varma, “Seamless Health Monitoring 

Using 5G NR for Internet of Medical Things”, Wireless Personal 
Communications, Springer, Jul 2021 https://doi.org/10.1007/s11277-

021-08730-7 

6. Nadine Akkari, Nikos Dimitriou, “Mobility Management Solutions for 
5 G Networks: Architecture and Services”, Computer Networks, 

Elsevier, Feb 2020 https://doi.org/10.1016/j.comnet.2019.107082 

7. X. Dinga, Q. Qib, S. Jian, “Mechanism design for Mobility-as-a-Service 
platform considering travellers’ strategic behavior and multidimensional 

requirements”, Transportation Research Part B: Methodological, 

Elsevier, Jul 2023 https://doi.org/10.1016/j.trb.2023.04.004 
8. Mohsen Attaran, “The impact of 5G on the evolution of intelligent 

automation and industry digitization”, Journal of Ambient Intelligence 
and Humanized Computing, Springer, Feb 2021 

https://doi.org/10.1007/s12652-020-02521-x 

9. Bhanu Priya, Jyoteesh Malhotra, “5GhNet: an intelligent QoE aware 
RAT selection framework for 5G-enabled healthcare network”, Journal 

of Ambient Intelligence and Humanized Computing, Springer, Feb 2023 

10. Venkatraman Balasubramanian, Faisal Zaman, Moayad Aloqaily, 
Ismaeel Al Ridhawi, Yaser Jararweh, and Haythem Bany Salameh, “A 

Mobility Management Architecture for Seamless Delivery of 5G-IoT 

Services”, IEEE Xplore, Aug 2019 
https://doi.org/10.1109/ICC.2019.8761658 

11. Ali Saeed Dayem Alfoudi, S. H. Shah Newaz, Rudy Ramlie, Gyu 

Myoung Lee, Thar Baker, “Seamless Mobility Management in 

Heterogeneous 5G Networks: A Coordination Approach among 

Distributed SDN Controllers”, IEEE Vehicular Technology, Aug 2019 

12. Ji-Hwan Choi and Dong-Joon Shin, “Generalized RACH-less Handover 
for Seamless Mobility in 5G and Beyond Mobile Networks”, IEEE 

Wireless Communications Letters, Aug 2019 

13. Flavio Morselli, Sara Modarres Razavi, Moe Z. Win, Andrea Conti, 
“Soft Information Based Localization for 5G Networks and Beyond”, 

IEEE Transactions on Wireless Communications, Mar 2023 

https://doi.org/10.1109/TWC.2023.3275122 
14. Saddam Alraih, Rosdiadee Nordin, Asma Abu-Samah, Ibraheem 

Shayea, Nor Fadzilah Abdullah, “A Survey on Handover Optimization 

in Beyond 5G Mobile Networks: Challenges and Solutions”, IEEE 
Access, Jun 2023 https://doi.org/10.1109/ACCESS.2023.3284905 

15. Syed Hussain Ali Kazmi, Faizan Qamar, Rosilah Hassan, Kashif Nisar, 

“Routing-Based Interference Mitigation in SDN Enabled Beyond 5G 
Communication Networks: A Comprehensive Survey”, IEEE Access, 

Jan 2023 

16. Amiraslan Haghrah, Mehran Pourmohammad Abdollahi, Hosein 
Azarhava and Javad Musevi Niya, “A survey on the handover 

management in 5G-NR cellular networks: aspects, approaches 

and challenges”, EURASIP Journal on Wireless Communications and 
Networking, Springer, Feb 2023 https://doi.org/10.1186/s13638-023-

02261-4 

17. Amal Chaffai, “Mobility Management in 5G Network on the Efficiency 
Hierarchical State of Slicing”, Springer, Oct 2021 

https://doi.org/10.21203/rs.3.rs-2135964/v1 

18. A. Saraswathi Priyadharshini P.T.V. Bhuvaneswari, “Regression model 
for seamless mobility in LTE-A HetNets”, Wiley, Jan 2018 

https://doi.org/10.1002/ett.3570 

19. Mubarak S. Almutairi, “Deep Learning-Based Solutions for 5G Network 
and 5G-Enabled Internet of Vehicles: Advances, Meta-Data Analysis, 

and Future Direction”, Mathematical Problems in Engineering, 

Hindawi, Jan 2022 https://doi.org/10.1155/2022/6855435 
20. Zihang Gao, “Research on 5G Network Slicing Strategy for Urban 

Complex Environment”, Wireless Communications and Mobile 

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijrte.F8018.12060324
https://www.doi.org/10.35940/ijrte.F8018.12060324
http://www.ijrte.org/
https://doi.org/10.1109/TMC.2022.3188212
https://doi.org/10.1016/j.neucom.2019.01.031
https://doi.org/10.1109/ACCESS.2022.3215684
https://doi.org/10.1007/s11277-021-08730-7
https://doi.org/10.1007/s11277-021-08730-7
https://doi.org/10.1016/j.comnet.2019.107082
https://www.sciencedirect.com/journal/transportation-research-part-b-methodological
https://doi.org/10.1016/j.trb.2023.04.004
https://doi.org/10.1007/s12652-020-02521-x
https://doi.org/10.1109/ICC.2019.8761658
https://doi.org/10.1109/TWC.2023.3275122
https://doi.org/10.1109/ACCESS.2023.3284905
https://doi.org/10.1186/s13638-023-02261-4
https://doi.org/10.1186/s13638-023-02261-4
https://doi.org/10.21203/rs.3.rs-2135964/v1
https://doi.org/10.1002/ett.3570
https://doi.org/10.1155/2022/6855435


 
Gibbs Haversine Reinforcement Learning Based Handover For 5g Enabled Seamless Mobility in Wireless Network 

                                     54 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.F801812060324 
DOI: 10.35940/ijrte.F8018.12060324 

Journal Website: www.ijrte.org  

 

Computing, Wiley, Jun 2023 https://doi.org/10.1155/2023/2820966 

AUTHORS PROFILE 

T. Vidhya. My school's name is Sri Saradha Mandir 

Matriculation Hr Sec School. My undergraduate 
studies were conducted at Cauvery College for 

Women, affiliated with Bharathidasan University, 

Trichy, Tamil Nadu. My undergraduate is 
B.SC(Computer Science). My postgraduate degree was 

a Master of Computer Applications, which I studied at 

Cauvery College for Women, Bharathidasan 
University, Trichy, Tamil Nadu. m. Phil studied at Vinayaka Mission 

University, Tamil Nadu. I am currently pursuing a Ph.D. in Computer 

Science at Periyar University, Salem, Tamil Nadu. My research field is 
wireless networks. 

 

Dr. C. Chandrasekar, Professor and Head of the 
Department at Periyar University, Salem, Tamil Nadu, 

has been a senior member of the Computer Society of 

India since 2000. In 2014, he published the journal 

article " An Enhanced Flooding in Fish Eye State 

Routing Protocol for Manet-Grid using fuzzy and rough 

set approaches, guided by a doctoral thesis. In 2020, an 
international conference was organised by St.  Joseph 

College, Hosur. Publications paper first one fuzzy signal strength estimated 

Markov probabilistic graph for efficient than Dover and seamless data 
delivery in PAN. To improve disk load balancing performance in a cloud 

environment, using improved lion optimisation with a min-max algorithm 

was one of the publications. 
 

 

Disclaimer/Publisher’s Note: The statements, opinions and 

data contained in all publications are solely those of the 

individual author(s) and contributor(s) and not of the Blue 

Eyes Intelligence Engineering and Sciences Publication 

(BEIESP)/ journal and/or the editor(s). The Blue Eyes 

Intelligence Engineering and Sciences Publication (BEIESP) 

and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, 

instructions or products referred to in the content. 

 

 

https://www.doi.org/10.35940/ijrte.F8018.12060324
https://www.doi.org/10.35940/ijrte.F8018.12060324
http://www.ijrte.org/
https://doi.org/10.1155/2023/2820966

