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Abstract: Seamless Mobility (SM) is crucial for bringing about 

better Quality of Service (QoS) like minimum handover latency 

with maximum throughput in 5G networks. In this work a method 

called, Jenkin Impulse Response Filtering and Reinforcement 

Learning-based Gibbs Haversine Distribution (JIRF-RLGHD) for 

optimal selection of target cells for the handover process to ensure 

seamless mobility is designed. The JIRF-RLGHD method is split 

into two sections. They are predicting the signal quality of both 

serving and adjacent wireless nodes using the Box Jenkin Impulse 

Response Filtering model. The second task remains in applying 

Reinforcement Learning-based Gibbs Haversine Distribution for 

optimal selection of target cells for handover to ensure seamless 

mobility in a wireless network. The overall proposed method was 

simulated on a Python programming interface language. The 

simulation results reveal that the JIRF-RLGHD method offers a 

greater delivery rate, and handover success with lesser handover 

latency at minimal packet loss rate. Numerical results show that 

the JIRF-RLGHD method performs better in terms of data 

delivery rate by 18%, and handover latency by 33% compared to 

existing methods.  

Keywords: Fifth Generation, Seamless Mobility, Quality of 

Service, Box Jenkin, Impulse Response Filter, Reinforcement 

Learning, Gibbs Haversine Distribution 

I. INTRODUCTION

Optimization based on the distance (Opt. Distance) was

employed as the mechanism to ensure effectiveness and 

convenience with divergent mobility patterns based on the 

User Equipment (UE) state of affairs [1]. The areas that 

necessitated improvement were also analyzed and 

accordingly, tuning of network parameters was made 

automatically. Moreover, employing antenna gain and path 

loss models, according to the change in network conditions 

and traffic patterns, service quality was said to be enhanced 

with minimal human efforts. Finally, better user experiences 

were provided with a better bandwidth allocation handover 

process in a significant manner. Despite improvements in 

terms of allocating bandwidth with a better handover process 

the delay which is considered as one of the important 

performance factors was not taken into consideration while 

designing divergent mobility patterns.  
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The 5G NR supports enhanced mobile broadband, low 

latency communications, and huge numbers of mobile 

devices. Hence, seamless mobility is required to be conserved 

in the course of migration between cells in the procedure of 

handover. However, with the existence of an enormous 

number of mobile devices, high mobility management of 

dense networks becomes pivotal. In addition, an active 

adjustment is essential that crucially influences the handover 

latency and overall throughput.  

A Learning-based Intelligent Mobility Management 

(LIM2) was proposed in [2] for handling mobility 

management in 5G. Here, initially Kalman filter was applied 

to predict future signal quality of both serving and adjacent 

cells, optimal selection of target cell for handover process 

using State Action Reward Station Action-based 

reinforcement learning. Finally, a greedy policy was used as 

a means for time to trigger, therefore ensuring high 

throughput and low packet delay. Though high throughput 

with low packet delay was ensured the latency was not 

focused. Next-generation wireless cellular networks are 

visualized to be envisioned to be self-coordinated, significant, 

and cost-efficient. Owing to the new paradigm, 5G, there are 

several design issues, spanning from scalable mobility 

management to reliable resource management for seamless 

access to wireless services deprived of compromising the 

anticipated Quality of Service (QoS). A control/data 

separation architecture was designed in [3] via stacked long 

short-term memory (LSTM). With this type of design 

efficient separation between predictive and nonpredictive 

cases was made based on holistic handover cost evaluation 

that in turn improved handover accuracy. An extensive 

number of base stations and associated sensors have been 

growing exponentially. This in turn had corresponding 

increased numerous types of mobility management issues that 

in turn necessitated optimization model to circumvent 

degradation of QoS. Machine learning (ML) is an optimistic 

model for future wireless 5G networks. The robustness 

optimization technique was applied in [4] via key 

performance indicators ensuring system enhancements. In 

this day and age, information and communication technology 

extends swiftly. As a result, there is an improvement in both 

coverage and connectivity. On the other hand, the evolution 

of 5G has resulted in minimal communication latency, 

highest speed, increased throughput, and so on. In [5], 

essential and pivotal characteristics of 5G communication 

technology in addition to the drawbacks of prevailing 

methods were presented in detail.  
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A holistic review of seamless mobility management 

issues related to 5G was investigated in [6].  

The domain of seamless mobility extends from health to 

surveillance and transportation. A greedy pricing scheme was 

applied in [7] employing a column-generated solution to 

obtain the optimal solution for measuring the strategic 

behavior of travelers and ensuring seamless mobility. A 

detailed literature review along with the exploration of 5G in 

different industries was investigated in [8]. Also, an in-depth 

review of the evolution and progress of wireless technology 

with emphasis on the significance of 5G networks was 

presented. In the recent few years, healthcare has received a 

great deal of importance post covid for providing robust 

solutions using 5G. Prevailing radio access technology was 

improvised in [9] to ensure quality of experience. Also, 

resource utilization was improved using a multi-agent 

reinforcement learning mechanism [25][26].  

A. Contributions 

Motivated by the above issues, like, handover latency, 

packet loss, data delivery rate, and success of handover for 

seamless mobility in wireless networks, in this work, a 

method called, Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine Distribution 

(JIRF-RLGHD) is designed using Jenkin Impulse Response 

Filtering and Reinforcement Learning-based Gibbs 

Haversine Distribution. The major contributions of this work 

are pointed out below. 

▪ To present a significant method for designing seamless 

mobility in wireless networks by ensuring optimal 

handover called, Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine 

Distribution (JIRF-RLGHD). 

▪ To design convergence-efficient filtered signal (i.e., 

eliminating the noisy signal results), to minimize 

handover latency and packet loss using the Box Jenkin 

Impulse Response Filtering algorithm applied to the raw 

traffic flows obtained from the IP Network Traffic 

Flows dataset 

▪ To propose a Reinforcement Learning-based Gibbs 

Haversine Distribution algorithm for optimally 

selecting target cells for performing handover therefore 

ensuring seamless mobility in an accurate and precise 

manner.  

▪ Finally, the performance of the proposed JIRF-RLGHD 

based seamless mobility method for traffic flows is 

compared with the conventional state-of-the-art 

methods. 

B. Organization of the Work 

The rest of the paper is organized as given below. Section 

2 provides the related works on seamless mobility, handover, 

machine learning, and deep learning for network traffic 

flows. Section 3 presents a brief description of the seamless 

mobility for wireless networks called, Jenkin Impulse 

Response Filtering and Reinforcement Learning-based Gibbs 

Haversine Distribution (JIRF-RLGHD). After that, Section 4 

provides experimental results, along with the corresponding 

implementation details in Section 5. Section 6 presents a 

detailed comparative study between the proposed JIRF-

RLGHD method and the other state-of-the-art methods with 

the aid of table and graphical representation. Finally, Section 

7 concludes the paper.  

II. RELATED WORKS 

The mobile industry is evolving and getting ready to 

establish the 5G networks. The developing 5G networks are 

flattering more becoming more willingly accessible as an 

efficient driver of IoT devices. Moreover, 5G’s lightning-fast 

connection and low latency are required for evolution in 

intelligent automation like Artificial Intelligence (AI), 

driverless cars, digital reality, and so on. The evolution of 5G 

yet opens a state-of-the-art world of probabilities for almost 

all areas of the domain.  

Mobility management is one of the paramount services 

that necessitate awareness for the present-day 5G 

organizations. Moreover, the QoS essentials in 5G wireless 

networks are user-specific. As far as seamless mobility in 5G 

wireless networks is concerned network slicing has been 

considered as one of the key enablers for ensuring on-demand 

service schemes. In [10][24], radio resource access was 

concentrated on mobile roaming users. In addition, an 

integrated architecture was designed to enable seamless 

handover between a 5G via network slicing paradigm. 

However, two major issues latency and bandwidth were not 

focused. To address these two aspects, Software Defined 

Networking (SDN) and Network Function Virtualization 

(NFV) were designed for 5G networks [11]. Here, seamless 

mobility management while shifting the paradigm between 

SDN to another in a 5G network was designed. Employing a 

distributed hash table resulted in the minimization of 

handover latency significantly.  

With the mushrooming expansion of traffic load and 

associated devices in the wireless network, the 5G should 

reliably minimize the latency. Specifically, seamless mobility 

is highly required for attaining low handover latency. In [12], 

a generalized RACH-less handover method was presented for 

arriving at seamless mobility without the need for a 

synchronized network. Yet another holistic review of user 

localization equipment along with standardized reference 

signals to ensure localization accuracy was presented in [13]. 

A survey of handover optimization mechanisms was 

investigated in [14][21][22].  

The main objective of 5G communication remains to 

bring a revolution in QoS) using mobile broadband, low 

latency reliable communication process, and enormous 

communication between machines. In [15] a comprehensive 

survey of 5G communication networks for addressing 

routing-based interference was designed. A detailed survey 

on the handover management to ensure seamless mobility in 

5G was detailed in [16]. Also, certain performance metrics 

like throughput, delay, and traffic load involved in the 

handover process were detailed. Moreover, the challenges 

involved in designing handover to counteract the attacks 

during handover were also presented. Seamless mobility 

management in 5G networks for massive wireless data from 

numerous application scenarios was presented in [17].  
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A regression model for seamless mobility deploying 

heterogeneous networks was designed in [18][23].  The 

evolution of the 5G wireless network with seamless mobility 

has led the way towards numerous advantages. However, it 

gave rise to new issues on the 5G wireless network, therefore 

making the prevailing methods out of data to handle the new 

issues. Owing to this, research learning was performed to 

explore deep learning methods in addressing issues in the 5G 

network.  

In [19] a survey of deep learning methods for addressing 

issues concerning 5G in wireless networks for seamless 

mobility was proposed. However, still now seamless mobility 

for complicated urban environments was not focused. To 

address this issue, a network-slicing strategy for machine 

communication was researched in [20]. 

Even though machine learning methods have been 

considerably used and applied in the area of seamless 

mobility with 5G, only a few researchers have endeavored to 

utilize machine learning methods. As discussed earlier, we 

will demonstrate that machine learning can be used to ensure 

seamless mobility with optimal handover in a 5G wireless 

network. 

III. MATERIALS AND METHODOLOGY  

A. Dataset description 

The proposed method uses IP Network Traffic Flows 

Labeled with 75 Apps dataset extracted from 

https://www.kaggle.com/jsrojas/ip-networktraffic-flows-

labeled-with-87-apps for attending wireless network 

seamless mobility in 5G. The corresponding raw data were 

obtained both in the morning and afternoon over six days time 

period in the month between April and May 2017. The dataset 

includes an overall of 87 features and 3577296 instances were 

gathered, accumulated, and stored in the form of a CSV file. 

The sample instance comprises IP information flow executed 

by both the source and destination IP addresses, ports, inter-

arrival time, and layer 7 protocols. Several features are in the 

form of numeric but nominal data types are included along 

with the date types called, Timestamp. The features included 

in the dataset are source port, source IP, flow ID, flow 

duration, time stamp, destination IP, destination port, total 

forward and backward packets, and length of forward and 

backward packets respectively. The input vector for the 

corresponding IP Network Traffic Flows Labeled dataset is 

subjected to the input vector matrix as given below.  

𝐼𝑉 = [

𝑆1𝐹1 𝑆1𝐹2 … 𝑆1𝐹𝑛

𝑆2𝐹1 𝑆2𝐹2 … 𝑆2𝐹𝑛

… … … …
𝑆𝑚𝐹1 𝑆𝑚𝐹2 … 𝑆𝑚𝐹𝑛

]   (1) 

From the above formulate (1), the input vector ‘𝐼𝑉’ matrix 

includes ‘𝑚’ samples with ‘𝑛’ features as input with which 

further processing is said to be performed.  

B. Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine 

Distribution (JIRF-RLGHD)  

Seamless mobility refers to the potentiality to transpose or 

change the wireless node’s point of attachment to an IP-based 

network without losing track of ongoing connections (i.e., 

current connections) and without disruptions in 

communication (i.e., between current cells and adjacent 

cells). Seamless mobility management, with facilities of 

seamless handoff and QoS guarantees, is one of the crucial 

matters in question to aid the global roaming of wireless 

nodes (WNs) between several wireless systems in a 

significant manner.  

As far as the 5G network is concerned, mobility is not 

only a physical postulation but also a logical one. It is hence 

pivotal to provide seamless mobility and QoS guarantee 

support stemming from intelligent and efficient mobility 

management mechanisms. To enable seamless mobility and 

QoS provision, a seamless handoff (i.e., minimal service 

disturbance in the course of handoff) is of considerable 

significance. Seamless handoff refers to minimal data packet 

loss, moderate handoff latency, and reasonable signaling 

traffic overhead. To converge with proliferating projections 

and upcoming requirements, 5G encompasses an extensive 

extent of performance-influencing characteristics.  

Evaluating the correlation between these influencing 

characteristics and validating every probability is a 

prerequisite to determining the constraints and issues that 

must be made certain for 5G to attain its objectives. These in 

addition make possible accurate and precise pre-selection of 

the characteristics based on necessitated before the 

deployment of the network that in turn results in the 

appropriate performance level. Nevertheless, while the 

association of several contributing characteristics leads the 

way to 5G organization, accurate and precision predicting 

performance based on all these associating characteristics 

remains a major challenge in practice. To address the 

challenge, this work proposes a 5G model consisting of five 

distinct modules. 

a. System model 

Let ‘𝑆𝑁’ be the serving node, ‘𝑇𝑁’ be the target node, and 

‘𝛼𝐼𝑆𝐷’ represent the Inter Site Distance between the serving 

node and the target node. Let the wireless node ‘𝑊𝑁’ be 

positioned at coordinates ‘(𝐴𝑖 , 𝐵𝑖)’ and supposed to progress 

in a straight line making an angle of ‘𝛽’ for the ‘𝛼𝐼𝑆𝐷’ where 

‘𝛽 = 0°’ associates the straight line movement of wireless 

node ‘𝑊𝑁’ toward the target node target node. One of the 

pivotal digital framework building blocks for 5G includes a 

microcell, picocell, and femtocell. As a substitute for 

restoring conventional macrocells, employing the small cells 

(i.e., microcell, picocell, and femtocell) augments this 

framework to improve both network coverage and volume in 

dense locations. To provide targeted wireless network 

coverage and volume, three types of cells, called, femtocells, 

picocells, and microcells are used. As the name implies, 

femtocells cover a diameter of up to 10 meters, picocells 

cover a diameter of up to 200 meters, whereas microcells 

cover a diameter of up to 2 km. Owing to this in our work, 

picocells and microcells are employed for designing 

minimum interference seamless mobility design patterns 

employing the flow statistics and deep packet inspection from 

the application layer protocol information obtained from the 

raw dataset for further processing. Figure 1 given below 

illustrates the sample system model deployment for wireless 

network seamless mobility. 
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Fig. 1: System Model of Wireless Network Seamless Mobility 

As illustrated in the above figure, with the wireless node 

‘𝑊𝑁’ positioned at coordinates ‘(𝐴𝑖 , 𝐵𝑖)’, the picocell be 

represented as ‘ (𝐴𝑃𝐶 , 𝐵𝑃𝐶) ’ whereas the microcell is 

represented as ‘(𝐴𝑀𝐶 , 𝐵𝑀𝐶 )’. The wireless node ‘𝑊𝑁 ’ is 

supposed to travel between serving node ‘𝑆𝑁’ and target node 

‘𝑇𝑁’ at a constant velocity and angle. At any time instance, 

the wireless node ‘𝑊𝑁’ is considered to be at distance ‘𝛼𝑀𝑃’ 

from the microcell and ‘𝛼𝑃𝑀’ from the picocells. Finally, the 

Inter-Site Distance ‘𝛼𝐼𝑆𝐷 ’ represents the distance between 

two adjacent sites or adjacent nodes. Then, the distance 

between wireless node ‘𝑊𝑁’ and ‘𝛼𝑀𝑃’ from the microcell 

and ‘𝛼𝑃𝑀’ from the picocells are mathematically formulated 

as given below.  

𝛼𝑀𝑃 = √(𝐴𝑖 − 𝐴𝑀𝑃)2 + (𝐵𝑖 − 𝐵𝑀𝑃)2  (2)

  

𝛼𝑃𝑀 = √(𝐴𝑖 − 𝐴𝑃𝑀)2 + (𝐵𝑖 − 𝐵𝑃𝑀)2  (3) 

From the above equations (2) and (3), ‘𝛼𝑀𝑃’ and ‘𝛼𝑃𝑀’ 

represents the location coordinates of macro pico 

‘(𝐴𝑀𝑃 , 𝐵𝑀𝑃)’ and picomacro ‘𝑃𝑖𝑐𝑜𝑀𝑎𝑐𝑟𝑜’ respectively.  

b. Box Jenkin Impulse Response Filtering model 

Following which with the above system model in 

consideration to predict the future signal quality of both 

service and adjacent cells or nodes, in this work, a scalable 

and reliable impulse response filter modeling called, Box 

Jenkin Impulse Response Filtering is applied. By applying 

this scalable and reliable impulse response filtering the 

existence of a reliable and scalable link quality is appertained 

that in turn not only reduces the handover latency but also 

ensures minimal packet loss in a significant manner. Figure 2 

shows the structure of the Box Jenkin Impulse Response 

Filtering model. 

 

 

Fig. 2: Structure of Box Jenkin Impulse Response Filtering Model 
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As illustrated in the above figure, first, with the input 

vector matrix ‘𝐼𝑉’ obtained from the raw dataset ‘𝐷𝑆’, and 

location coordinates obtained, a scalable and reliable impulse 

response filter is designed. This formulation is generated in 

such a manner to predict the future signal quality of 

‘𝑅𝑆𝑆𝐼[𝑛]’ and the duration below which ‘𝑅𝑆𝑆𝐼[𝑛]’ remains 

a threshold is mathematically stated as given below.  

𝑅𝑆𝑆𝐼𝑝𝑟𝑒𝑑[𝑛] = ∑ ℎ𝑛[𝑙]𝑅𝑆𝑆𝐼[𝑛 − 𝑙]𝑀
𝑙=1 (𝐼𝑉)  (4) 

From the above equation (4), ‘𝑀’ refers to the number of 

data packets necessitated for prediction whereas ‘𝑅𝑆𝑆𝐼[𝑛 −
1]’ refers to the measured RSSI value at time ‘𝑛 − 1’ and 

‘ℎ𝑛[𝑙]’ represents the ‘𝑙 − 𝑡ℎ’ coefficient of the filter for ‘𝑛 −
𝑡ℎ’ round respectively. Also, the filter coefficient values are 

updated in an arbitrary manner with which the updated link 

quality estimate results are then mathematically stated as 

given below.  

𝑅𝑆𝑆𝐼(𝑛) = 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛 + 1] = 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛] +
𝛾(𝑅𝑆𝑆𝐼[𝑛] − 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛])                                (5) 

From the above equation results (5) using the filter 

coefficient values ‘0 < 𝛾 < 1’ the predicted RSSI value for 

‘ 𝑛 + 1 ’ determines the anticipated error between the 

predicted RSSI and the actual RSSI values, hence taking into 

consideration both the service and adjacent cells or nodes. 

With this future signal quality results are arrived at therefore 

minimizing handover latency and data packet loss rate in a 

significant manner. The output ‘ 𝑦(𝑛) ’ from the above-

updated link quality estimate remains an additive sum of the 

signal ‘𝑅𝑆𝑆𝐼(𝑛)’, disturbance ‘𝐷𝑖𝑠(𝑛)’ the noise measured 

‘𝑣(𝑛)’. This is mathematically stated as given below.  

𝑦(𝑛) = 𝑅𝑆𝑆𝐼(𝑛) + 𝐷𝑖𝑠(𝑛) + 𝑣(𝑛)   (6) 

𝑅𝑆𝑆𝐼(𝑛) = 𝐺𝑅𝑆𝑆𝐼(𝑛) + 𝐼𝑉(𝑛)   (7) 

𝐷𝑖𝑠(𝑛) = 𝐺𝑤(𝑛)𝑤(𝑛)    (8) 

From the above equations (6), (7), and (8), the signal 

‘𝑅𝑆𝑆𝐼(𝑛)’ and the disturbance ‘𝐷𝑖𝑠(𝑛)’ models are obtained 

taking into consideration sample input vector ‘𝐼𝑉(𝑛)’, white 

noise ‘𝑤(𝑛) ’, transfer matrix or order ‘ 𝑛𝑅𝑆𝑆𝐼 ’ and ‘𝑛𝑤 ’ 

respectively. Finally, using the Box Jenkins function, an 

efficient mathematical model that forecasts the signal quality 

is obtained from the following formulate as given below.  

𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛) = 𝐷𝑤(𝑛)𝑁𝑅𝑆𝑆𝐼 𝑤 (𝑛)𝐼𝑉(𝑛) + 𝜖(𝑛)  (9) 

𝐷 𝑤(𝑛) = 𝐷𝑅𝑆𝑆𝐼(𝑛)𝐷𝑤(𝑛)    (10) 

𝑁𝑅𝑆𝑆𝐼 𝑤 (𝑛) = 𝐷𝑤(𝑛)𝑁𝑅𝑆𝑆𝐼(𝑛)    (11) 

From the above equations (9), (10), and (11), future signal 

forecasting results are predicted based on the denominator 

‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ and numerator ‘𝑁𝑅𝑆𝑆𝐼 𝑤 (𝑛)’ polynomials. The 

pseudo-code representation of Box Jenkin Impulse Response 

Filtering for generating scalable and reliable filters is given 

below.  

Input: Dataset ‘𝐷𝑆’, Samples ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚}’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑛}’, Data packets ‘𝐷𝑃 = {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑀}’ 

Output:filtered signal results ‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ with minimal handover latency and packet loss  

Step 1: Initialize ‘𝑚 = 3557297 ’, ‘𝑛 = 87’, serving node ‘𝑆𝑁’, target node ‘𝑇𝑁’, ‘𝑀’, coefficient ‘0 < 𝛾 < 1’ 

Step 2: Begin  

Step 3: For each Dataset ‘𝐷𝑆’ with Samples ‘𝑆’ and Features ‘𝐹’ 

Step 4: Formulate the input vector matrix as given in equation (1) 

Step 5: Formulate distance between wireless node ‘𝑊𝑁’ and ‘𝛼𝑀𝑃’ from the microcell as given in equation (2) 

Step 6: Formulate distance between wireless node ‘𝑊𝑁’ and ‘𝛼𝑃𝑀’ from the picocells as given in equation (3) 

Step 7: Evaluate link quality as given in equation (4) 

Step 8: Evaluate updated link quality estimate results as given in equation (5) 

Step 9: If ‘𝑅𝑆𝑆𝐼[𝑛] − 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛] 𝑎𝑟𝑒 ℎ𝑖𝑔ℎ𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑’  

Step 10: Then predicted signal results are correct and make ‘𝛾’ purposefully small  

Step 11: Return predicted future signal quality  

Step 12: End if  

Step 13: If ‘𝑅𝑆𝑆𝐼[𝑛] − 𝑅𝑆𝑆𝐼𝑃𝑟𝑒𝑑[𝑛] 𝑎𝑟𝑒 𝑙𝑒𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑’  

Step 14: Then predicted signal results are not correct and make ‘𝛾’ purposefully large  

Step 15: Go to step 5 
Step 16: End if  

Step 17: Evaluate signal and output error as given in equations (6), (7) and (8) 
Step 18: Formulate Box Jenkin function to the evaluated signal and output error to predict signal quality results as given in equations (9), (10) and 

(11) 

Step 19: End for 

Step 20: End  

Algorithm-1: Scalable and Reliable Impulse Response Filter 

As given in the above algorithm to minimize both the 

handover latency and packet loss, a scalable and reliable 

impulse response filter is applied. First, with the raw data 

obtained from the dataset and formulated as an input vector 

matrix, the distance between the wireless node from the 

microcell and the picocells is initially measured. Second, the 

list quality is estimated for each round with different numbers 

of data packets and time instances. Third, according to the 

updated link quality estimates filter coefficient values are 

updated arbitrarily. Finally according to the correlated results, 

predicted future signal quality is either returned or proceeds 

with other sets of data. With the predicted future signal 

quality results, the signal and the output error are evaluated. 

From the identified results, minimal realizations of the signal, 

the disturbance, and the filter are obtained using the Box 

Jenkin function that in turn not only minimizes the handover 

latency but also reduces the packet loss rate significantly.  

c. Reinforcement Learning-based Gibbs Haversine 

Distribution for optimal selection of target cell for handover 

process to ensure seamless mobility  

Handover enhancements were explored to handle 

frequent handovers owing to seamless mobility in wireless 

networks. Therefore, the major problem of handover towards 

seamless mobility was the signaling storm generated by 

handing over all wireless nodes in wireless networks in an old 

cell to a new cell owing to the reason that when the wireless 

node intersects the boundary between the serving and 

adjacent, handover occurs.  
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With this frequent handover, the data delivery rate and 

subsequently the success of handover are compromised. To 

address this issue, in this work, Reinforcement Learning-

based Gibbs Haversine Distribution for optimal selection of 

target cells for the handover process to ensure seamless 

mobility is designed. Figure 3 shows the structure of the 

Reinforcement Learning-based Gibbs Haversine Distribution 

model. 

 

Fig. 3: Structure of Reinforcement Learning-based Gibbs Haversine Distribution Model 

As illustrated in the above figure, the environment state is 

assessed based on the handover optimization costs (e.g., too 

late handovers and too early handovers) and accordingly 

selects an action to optimize handover parameters (e.g., Time 

To Trigger (TTT) and Cell Individual Offsets (CIO)) in 

harmony with the measured state by employing prior 

knowledge (i.e., from impulse response filter). 

The knowledge is updated based on optimization costs to 

reflect the optimal selection of target cells for the handover 

process. To fine-tune mobility between cell ‘𝑖’ and cell ‘𝑗’, 

the optimal selection of the target cell for the handover 

process includes four features, the environment state ‘𝑒𝑠𝑖𝑗 ∈

𝐸𝑆’, action ‘𝑎𝑖𝑗 ∈ 𝐴(𝐸𝑆𝑖𝑗)’, dataset ‘𝐷𝑆(𝑎𝑖𝑗)’ that provides 

the belief distribution of optimal features and cost function 

‘𝐶𝑖𝑗’ that consider the quality of an action in a given state 

respectively.  

The proposed algorithm selects the optimal action 

‘𝐴(𝐸𝑆𝑖𝑗)’ to reduce handover cost (i.e., maximizing data 

delivery rate and success of handover) based on optimization 

costs. Environment state ‘𝑒𝑠𝑖𝑗 ∈ 𝐸𝑆’ is sensed based on the 

handover to reduce unwanted handovers. The environment 

state ‘𝑒𝑠𝑖𝑗 = (𝐸𝑆𝐶𝐼𝑂+, 𝐸𝑆𝐶𝐼𝑂− , 𝐸𝑆𝑇𝑇𝑇+, 𝐸𝑆𝑇𝑇𝑇−)’ that refers 

to the increase in CIO, decrease in CIO, increase in TTT, and 

decrease in TTT respectively, from their prevailing values, to 

control both too late and too early handover, therefore 

ensuring seamless mobility extensively. Following this, the 

action ‘𝐴𝑖𝑗 ∈ 𝐴(𝐸𝑆𝑖𝑗)’ fine tunes the resultant ‘𝐶𝐼𝑂 ’ and 

‘𝑇𝑇𝑇’ values to reduce unwanted handovers as claimed by 

the current state ‘𝐸𝑆𝑖𝑗 ’ via Haversine function. Hence, the 

action ‘𝐴(𝐸𝑆𝑖𝑗)’ is set to change based on the state ‘𝐸𝑆𝑖𝑗’ via 

Havversine function. 

 𝜃 =
𝐷𝑖𝑠

𝑅𝑎𝑑𝑖𝑢𝑠
     (12) 

From the above equation (12), ‘𝐷𝑖𝑠’ and ‘𝑅𝑎𝑑𝑖𝑢𝑠’ refer 

to the distance and radius between two wireless nodes on a 

sphere. Finally, the fine-tuned results are obtained by 

measuring the haversine of ‘ 𝜃 ’ from the latitude and 

longitude of two points as given below.  

𝐻𝑎𝑣(𝜃) = 𝐻𝑎𝑣(𝛼1 − 𝛼2) + cos 𝛼1 cos 𝛼2 (𝛽1 − 𝛽2)   (13) 

From the above equation (13), ‘𝛼1’ and ‘𝛼2’ represents 

the latitude of wireless node ‘𝑊𝑁𝑖’ and latitude of wireless 

node ‘𝑊𝑁𝑗 ’, ‘𝛽1 ’ and ‘𝛽2 ’ representing the longitude of 

wireless node ‘𝑊𝑁𝑖 ’ and latitude of wireless node ‘𝑊𝑁𝑗 ’ 

respectively. Based on the latitude and longitude of the 

serving and adjacent nodes for the fine-tuned haversine 

results, a greedy strategy optimal action is selected as given 

below.  
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𝐴𝑖𝑗
′ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑄(𝐴𝑖𝑗)[𝐻𝑎𝑣(𝜃)]  (14) 

Finally, the cost function reflects the quality of action in a 

given state according to too-late handovers and too-early 

handovers between serving cells (i.e., a wireless node) ‘𝑊𝑁𝑖’ 

and adjacent cell (i.e., a wireless node) ‘ 𝑊𝑁𝑗 ’ are 

mathematically stated as given below.  

𝑅𝐿𝑖𝑗 =
𝑁𝑇𝑜𝑜𝐿𝑎𝑡𝑒𝑖𝑗

𝑁𝑇𝑜𝑡𝑖𝑗
; 𝑅𝐸𝑖𝑗 =

𝑁𝑇𝑜𝑜𝐸𝑎𝑟𝑙𝑦𝑖𝑗

𝑁𝑇𝑜𝑡𝑖𝑗
 ;  𝑅𝑖𝑗 = 𝑅𝐿𝑖𝑗 + 𝑅𝐸𝑖𝑗    (15) 

From the above equation (15), the reinforced cost function 

‘𝑅𝑖𝑗’ between serving cell (i.e., a wireless node) ‘𝑊𝑁𝑖’ and 

adjacent cell (i.e., a wireless node) ‘𝑊𝑁𝑗’ are obtained based 

on the reinforced too late handovers ‘𝑅𝐿𝑖𝑗 ’ and too early 

handovers ‘𝑅𝐸𝑖𝑗’ respectively. Finally, the haversine function 

‘ ℎ𝑎𝑣(𝜃) ’ is applied to both the central angle and the 

differences in latitude and longitude to obtain the optimal 

selection as given below.  

ℎ𝑎𝑣(𝜃) = 𝑆𝑖𝑛2 (
𝜃

2
) [𝑅𝑖𝑗]    (16) 

With the above haversine-induced reinforced cost 

function results ‘ℎ𝑎𝑣(𝜃)’ as given in equation (16), the Gibbs 

probability distribution function is applied to select higher 

probability results to ensure better handover towards 

seamless mobility. This is mathematically stated as given 

below.  

𝑃𝑟𝑜𝑏(𝑒𝑠𝑖𝑗 , 𝐴𝑖𝑗
′ ) =

exp[−
𝜃(𝑎𝑖𝑗

′ )

𝜏
]

∑ exp[−
𝜃(𝑏𝑖𝑗

′ )

𝜏
]

𝑏𝑖𝑗
′ ∈𝐴(𝐸𝑆𝑖𝑗)

 17) 

From the above equation (17) results the probability of 

taking an action (i.e., selecting a target cell for the handover 

process) is measured from the Gibbs function based on the 

probability results. Higher probability results are selected 

than the lower probability results. In our work, ‘𝜏’ refers to 

the positive parameter called time to trigger ‘𝑇𝑇𝑇’. A higher 

‘𝑇𝑇𝑇’ causes the actions to have a more equal probability and 

on the other hand, a lower temperature leads to a greater 

difference in the selection probability for actions, which 

stimulates making use of prior knowledge. The pseudo-code 

representation of Reinforcement Learning-based Gibbs 

Haversine Distribution for optimal selection of target cells for 

the handover process to ensure seamless mobility is given 

below. 

 
Input: Dataset ‘𝐷𝑆’, Samples ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚}’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑛}’, Data packets ‘𝐷𝑃 = {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑀}’ 

Output: delivery improved optimal target cell or wireless node selection  

Step 1: Initializepredicted filtered signal results ‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with Samples ‘𝑆’, Features ‘𝐹’ and predicted filtered signal results ‘𝐷𝑅𝑆𝑆𝐼 𝑤(𝑛)’ 

//Environment  

Step 4: Formulate environment based on the increase in CIO, decrease in CIO, increase in TTT and decrease in TTT  

//Action  
Step 5: Apply Haversine function from latitude and longitude of two points as given in equations (12) and (13) 

Step 6: Evaluate greedy strategy-based optimal action as given in equation (14) 

//Cost evaluation  
Step 7: Formulate cost function as given in equation (15) 

Step 8: Apply haversine function to obtain the optimal selection as given in equation (16) 

Step 9: Formulate Gibbs probability distribution function to select higher probability results as given in equation (17) 
Step 10: End for  

Step 11: End 

Algorithm-2: Reinforcement Learning-based Gibbs Haversine Distribution 

As given in the above algorithm to ensure optimal 

handover and therefore ensure data delivery rate in a 

significant manner, the Gibbs Haversine Distribution 

function is applied to the Reinforcement Machine Learning 

model. First, the predicted filtered signal results as subjected 

to the given environment based on four environment states, 

i.e., increase in CIO, decrease in CIO, increase in TTT, and 

decrease in TTT respectively. Second, greedy strategy-based 

optimal action is taken using the Haversine function taking 

into consideration the latitude and longitude of two points 

(i.e., serving nodes and adjacent nodes). By applying this 

greedy strategy-based optimal action, the cost function is 

formulated, and following which Gibbs probability 

distribution function higher probability results are evolved. 

This in turn improves the handover success, therefore 

increasing the data delivery rate in a significant manner.  

IV. EXPERIMENTAL SETUP  

The proposed Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine Distribution 

(JIRF-RLGHD) method for the handover process to ensure 

seamless mobility along with the conventional method, 

optimization based on the distance (Opt. Distance) [1] and 

Learning-based Intelligent Mobility Management (LIM2) [2] 

is implemented in Python high-level general-purpose 

programming language. For fair comparison samples 

obtained from the IP Network Traffic Flows Labeled with 75 

Apps dataset [https://www.kaggle.com/jsrojas/ip-

networktraffic-flows-labeled-with-87-apps] are used to 

handle the simulation for all three methods. In addition, the 

results are evaluated by taking into consideration the 

performance metrics, such as handover latency, packet loss, 

data delivery rate, and success of handover. In addition, for 

evaluation, the maximum number of samples is taken as 

10000 and the maximum data packet size is considered as 

1500 KB. The performance of the JIRF-RLGHD method is 

compared with the other competing methods, Opt. Distance 

[1] and LIM2 [2] and evaluated. 

V. IMPLEMENTATION DETAILS  

In this study, we developed a machine learning-based 

handover method for 5G enabled seamless mobility in 

wireless networks called, Jenkin Impulse Response Filtering 

and Reinforcement Learning-based Gibbs Haversine 

Distribution (JIRF-RLGHD) with low packet loss, handover 

latency, and improved data delivery and handover success 

rate.  
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▪ The JIRF-RLGHD method comprises two sections, 

namely, future signal quality prediction and optimal 

handover process.  

▪ The JIRF-RLGHDmethod is compared with two 

existing methods, optimization based on the distance 

(Opt. Distance) [1] and Learning-based Intelligent 

Mobility Management (LIM2) [2] using IP Network 

Traffic Flows Labeled with 75 Apps dataset to validate 

the results.  

▪ Initially, the network traffic flows were obtained from 

the input dataset. 

▪ In the first part, the Box Jenkin Impulse Response 

Filtering model is employed to initially measure the 

distance between the wireless nodes, microcell, and 

picocells respectively. Next with the aid of RSSI, the 

link quality is estimated and according to the threshold, 

updates are made to smooth the prediction of future 

signal quality. Finally, the Box Jenkins function is 

applied to forecast the signal quality, therefore 

corroborating the objective of scalability and reliability.  

▪ Second, with the predicted future signal quality taking 

into consideration both the servicing node and the 

adjacent nodes into fact, the Reinforcement Learning-

based Gibbs Haversine Distribution algorithm is applied 

to ensure robust and smooth handover, therefore 

providing seamless mobility. 

According to the above implementation patterns, four 

different evaluation metrics are detailed in the next section.  

VI. RESULTS AND DISCUSSION  

In this section, the results are evaluated based on 

performance metrics such as handover latency, packet loss 

rate, data delivery rate, and handover success rate. In 

addition, for evaluation, the maximum number of samples is 

taken as 10000. The performance of JIRF-RLGHD is 

compared with the other competing methods, Opt. Distance 

[1] and LIM2 [2]. A simulation of 10 runs is performed.  

A. Performance of Handover Latency 

Handover latency refers to the delay that happens between 

when a user takes an action on a network and when it reaches 

its destination. It is measured in milliseconds. To be more 

specific, handover latency is defined as the difference in time 

consumed in discovering the new cell in a wireless network 

and the serving cell in a wireless network respectively. 

Handover latency is measured by taking into consideration 

the time of WN in the new cell and the time of WN in the old 

cell. This is mathematically formulated as given below. 

 𝐻𝑂𝐿 = 𝑊𝑁𝑁𝑒𝑤𝐶𝑒𝑙𝑙 − 𝑊𝑁𝑂𝑙𝑑𝐶𝑒𝑙𝑙    (18) 

From the above equation (18), the handover latency 

‘𝐻𝑂𝐿’ is measured based on the time of WN in the new cell 

‘𝑊𝑁𝑁𝑒𝑤𝐶𝑒𝑙𝑙’ and the old cell ‘𝑊𝑁𝑂𝑙𝑑𝐶𝑒𝑙𝑙’ respectively. It is 

measured in terms of milliseconds (ms). Table 1 given below 

lists the handover latency comparison using the three 

methods.  

Table-1: Handover Latency Comparison Using Three Methods, JIRF-RLGHD, Opt. Distance [1] and LIM2 [2] 

Methods Handover latency (without filter) Handover latency (with filter) 

JIRF-RLGHD 0.15 0.10 

Opt. Distance [1] 0.28 0.20 

LIM2 [2] 0.35 0.25 

 

Fig. 4: Simulation Results of Handover Latency 

Figure 4 given above shows the graphical representation 

of handover latency using the proposed method, JIRF-

RLGHD, and existing methods Opt. Distance [1] and LIM2 

[2] respectively. To validate the handover latency, results 

were identified both using a filter and without using a filter 

mechanism. From the above figurative representation, the 

handover latency with a filter was found to be comparatively 

reduced than without a filter. With 10000 samples being used, 

the handover latency without a filter using the proposed 

method was found to be 0.15 ms whereas it was found to be 

0.10 ms when applied with a filter. Similarly, Opt.  
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Distance [1] observed a handover latency of 0.28ms 

(without filter) and 0.20ms (with filter) and the LIM2 [2] 

method observed a handover latency of 0.35ms (without 

filter) and 0.25ms (with filter). The reason behind the 

improvement was owing to the application of the Box Jenkin 

Impulse Response Filtering algorithm for the JIRF-RLGHD 

method. By applying this algorithm, raw sample traffic flow 

data was subjected to design seamless mobility via an input 

vector matrix. With the available data, the distance between 

the wireless node from the microcell and picocells was 

measured. Following this, the link quality was evaluated 

concerning different numbers of data packets, which in turn 

improved the scalability with which the handover process 

was performed. Finally, based on the evaluation of updated 

link quality filter coefficients were updated randomly. This in 

turn improved the handover latency using the JIRF-RLGHD 

method by 33% upon comparison to [1] and 35% upon 

comparison to [2]. 

 

B. Performance of Packet Loss Rate and Data 

Delivery Rate  

Packet loss rate refers to the number of data packets lost 

during the transmission and is evaluated as given below.  

 𝑃𝐿 =
𝐷𝑃𝑙𝑜𝑠𝑡

𝐷𝑃𝑠𝑒𝑛𝑡
∗ 100    (19) 

From the above equation (19), the packet loss rate ‘𝑃𝐿’ is 

measured based on the data packet sent ‘𝐷𝑃𝑠𝑒𝑛𝑡’ and the data 

packet lost ‘𝐷𝑃𝑙𝑜𝑠𝑡’. It is measured in terms of percentage 

(%). The data delivery rate is measured as the percentage ratio 

of data packets that were efficiently delivered from the 

service node. This is mathematically stated as given below.  

 𝐷𝐷 =
𝐷𝑃𝑅𝐶

𝐷𝑃𝑆𝑁
∗ 100     (20) 

From the above equation (20), the data delivery rate ‘𝐷𝐷’ 

is measured by taking into consideration the data packets sent 

from the serving node ‘𝐷𝑃𝑆𝑁’ and the data packets received 

correctly ‘ 𝐷𝑃𝑅𝐶 ’. It is measured in terms of percentage 

(%).Table 2 given below lists the packet loss and data 

delivery rate comparison using the three methods.  

Table-2: Packet loss and Data Delivery Rate Comparison Using Three Methods, JIRF-RLGHD, Opt. Distance [1] and 

LIM2 [2] 

Methods Packet loss (%) Data delivery rate (%)  

JIRF-RLGHD 3.25 96.75 

Opt. Distance [1] 4.40 96 

LIM2 [2] 4.85 95.15 

 

Fig. 5: Simulation Results of Data Delivery Rate and Packet Loss 

Figure 5 given above illustrates the data delivery rate and 

packet loss using the proposed JIRF-RLGHD and existing 

methods, Opt. Distance [1] and LIM2 [2]. While performing 

the process of seamless mobility a certain amount of packet 

loss is said to occur during handover and therefore resulting 

in a significant amount of compromise in data delivery rate. 

However, simulations performed with 10000 sample traffic 

flows observed data packet loss of 325, 440, and 485 using 

the three methods. With this, the overall packet loss rate was 

found to be 3.25%, 4.40%, and 4.85% using JIRF-RLGHD, 

Opt. Distance [1] and LIM2 [2]respectively. Similarly, the 

data delivery rate was observed to be 96.75%, 93%, and 

91.15% using JIRF-RLGHD, Opt. Distance [1] and LIM2 

[2]respectively. From these results, the packet loss and data 

delivery rate were observed to be comparatively lesser using 

the JIRF-RLGHD method upon comparison to [1] and [2]. 

The reason behind the minimization of packet loss and 

maximization of data delivery rate was due to the application 

of the Reinforcement Learning-based Gibbs Haversine 

Distribution algorithm. By applying this algorithm, the 

predicted filtered signals were subjected according to four 

distinct environment states. Following this a greedy strategy-

based optimal action employing the Haversine function 

considering both the latitude and longitude of both serving 

nodes and adjacent nodes was used.  
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This in turn reduced the packet loss considerably using the 

JIRF-RLGHD method by an average of 18% upon 

comparison to [1] and [2]. Also, a greedy strategy-based 

optimal action, employing the Gibbs probability distribution 

function was applied to arrive at higher probability results 

evolved with better handover. This in turn improved the data 

delivery rate using the JIRF-RLGHD method by an average 

of 3% upon comparison to [1] and [2], ensuring reliability to 

a greater extent. 

C. Performance of Handover Success Rate 

The success of handover or handover success rate refers 

to the rate of successfully transferring an ongoing call or data 

session from one channel to another in a wireless network. 

The formula for measuring the handover success rate is 

mathematically formulated as given below. 

𝐻𝑂𝑆𝑅 =
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂+𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑜)

(𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂+𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑂)
∗ 100  (21) 

From the above equation (21), the handover success rate 

‘𝐻𝑂𝑆𝑅’ is measured taking into consideration the successful 

inter-cell handover ‘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂’, successful intra-cell 

handover ‘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑜’, attempted inter-cell handover 

‘𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝐻𝑂’ and the attempted intra-cell handover 

‘𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐼𝑛𝑡𝑟𝑎𝐶𝑒𝑙𝑙𝐻𝑂’ respectively. It is measured in terms of 

percentage (%). Finally, table 3 given below provides the 

handover success rate using the three methods.  

Table-3: Handover Success Rate Comparison Using Three Methods, JIRF-RLGHD, Opt. Distance [1] and LIM2 [2] 

Methods Handover success rate (without optimal distribution) (%) Handover success rate (with optimal distribution) (%) 

JIRF-RLGHD 85.35 92.15 

Opt. Distance [1] 80.15 83.55 

LIM2 [2] 75.25 85.45 

 

Fig. 6: Simulation Results of Handover Success Rate Using JIRF-RLGHD, Opt. Distance [1] and LIM2 [2] 

Figure 6 given above shows the handover success rate for 

an average of 10000 network traffic flows using the three 

methods, JIRF-RLGHD, Opt. Distance [1] and LIM2 [2]. The 

handover success rate as illustrated in the above figure 

involves the validation analysis both with and without 

optimal distribution. By performing optimal distribution the 

handover success rate using the three methods JIRF-RLGHD, 

Opt. Distance [1] and LIM2 [2] were observed to be 92.15%, 

83.55%, and 85.45% respectively. Similarly, without the 

application of optimal distribution, the handover success rate 

was found to be 85.35%, 80.15%, and 75.25% respectively. 

With this, the handover success rate using the JIRF-RLGHD 

method was found to be comparatively better than [1] and [2]. 

The reason behind the improvement was due to the 

application of the Reinforcement Learning-based Gibbs 

Haversine Distribution algorithm. By applying this 

algorithm, the Gibbs Haversine Distribution function was 

applied to the Reinforcement Machine Learning model. Also, 

a greedy strategy-based optimal action evolution model was 

used that in turn improved both the successful inter-cell 

handover and intra-cell handover. With this both the 

scalability and reliability of seamless mobility in wireless 

networks are said to be ensured using the JIRF-RLGHD 

method. 

Table-4: Overall Comparative Analysis of Proposed And Existing Methods 

Metrics/Methods  JIRF-RLGHD Opt. Distance [1] LIM2 [2] 

Handover latency (without filter) (ms) 0.15 0.28 0.35 

Handover latency (with filter) (ms) 0.10 0.20 0.25 

Packet loss (%) 3.25 4.40 4.85 

Data delivery rate (%) 96.75 96 95.15 

Handover success rate (without optimal distribution) (%) 85.35 80.15 75.25 

Handover success rate (with optimal distribution) (%) 92.15 83.55 85.45 
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Table 4 shows the overall comparative analysis of 

different methods such as JIRF-RLGHD, Opt. Distance [1] 

and LIM2 [2] to ensure seamless mobility in wireless 

networks.  The performance of proposed and existing 

methods is observed in terms of four various metrics such as 

handover latency, packet loss, data delivery rate, and 

handover success rate. As observed from the above figure, the 

proposed JIRF-RLGHD method outperformed the existing 

Opt. Distance [1] and LIM2 [2] methods. The handover 

latency of the JIRF-RLGHD method is obtained as 0.15ms 

without using a filter whereas 0.10ms handover latency is 

obtained for the JIRF-RLGHD method with filter. Also, the 

data delivery rate is achieved as 96.75% for the JIRF-

RLGHD method whereas 96% and 95.15% are achieved for 

existing [1] and [2]. In addition, the Handover success rate is 

achieved as 92.15%, 83.55%, and 85.45% for JIRF-RLGHD, 

existing [1] and [2] respectively with optimal distribution 

whereas 85.35%, 80.15%, and 75.25% for without optimal 

distribution. From the above results, it is inferred that the 

performance of the proposed JIRF-RLGHD method is found 

to be better than the state-of-the-art methods. Box Jenkin 

Impulse Response Filtering algorithm is used in JIRF-

RLGHD to get the convergence-efficient filtered signal. With 

this, noisy signals are eliminated and minimized handover 

latency and packet loss. In addition, the target cell is chosen 

in an optimal way using a Reinforcement Learning-based 

Gibbs Haversine Distribution algorithm to carry out the 

handover with minimum latency and a higher success rate 

than the conventional methods. 

VII. CONCLUSION  

In this study, a Jenkin Impulse Response Filtering and 

Reinforcement Learning-based Gibbs Haversine Distribution 

(JIRF-RLGHD) method-based handover is proposed for 

handling seamless mobility in a 5G wireless network with 

low packet loss and high handover success rate. The future 

signal quality of both serving and adjacent cells is predicted 

in a computationally efficient manner employing the Box 

Jenkin Impulse Response Filtering algorithm. Here a 

combination of updated link quality estimates based on the 

distance factor and Box Jenkin function were applied to the 

raw traffic signals to obtain probable signal results. Second, 

with the obtained probable signal results, the Reinforcement 

Learning-based Gibbs Haversine Distribution algorithm was 

applied to ensure optimal target cell selection for ensuring a 

reliable and scalable handover process. The IP Network 

Traffic Flows Labeled with 75 Apps dataset was utilized for 

the experimental assessment, and the results were also 

compared with the conventional state-of-the-art methods. 

The proposed CS-AGNN method performs better on the 

whole in terms of execution time, key storage cost, and 

throughput.  
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