

Dong Hwa Kim

Abstract: This paper deals with the curriculum design of Korean K-12 AI education. AI is the core technology of the 4th wave, and its impact is broad and strong. Therefore, every country has a robust nurturing system for AI talent. However, there are few materials available about curriculum design and operational experience documentation because AI has been an area of interest since 2016, and its educational applications are relatively new. In Korea, a program for teacher manpower education was initiated in 2020. Therefore, there is a lack of manpower with experience in designing and operating the K-12 AI curriculum. The AI curriculum is a core parameter for AI manpower. Therefore, AI-advanced countries are attempting to develop AI education methods. This paper analyses the K-12 AI curricula of advanced countries and then designs and suggests Korea's K-12 AI curriculum.

Keywords: Computer Education, AI, AI Curriculum, K-12, AI Education.

I. INTRODUCTION

Many countries have special AI policies to have an initiative because AI and related technologies impact everywhere [35, 37]. Chat GPT has been released, and its influence is increasing in many areas, such as industry, education, coding technology literature, etc., and some analyzers describe its impact as the steam engine industrial revolution of the 1700s [1, 2]. ChatGPT utilises basic reinforcement learning and RLHF (Reinforcement Learning with Human Feedback) in deep learning. Students can use it only when they have a good understanding of AI structure and development. Therefore, they have had a policy to introduce AI into education since 2016. At that time, DeepMind won against humans at matching play Go (Baduck) [3]. However, most countries do not have a policy to introduce AI education into their education program.

Humans have been implementing AI using logical and mathematical methods [4], and they have tried inference for AI using fuzzy since 1965 [5]. There are many tools, such as PSO (Particle Swarm Optimal), BF (Bacterial Foraging),

Manuscript received on 06 July 2023 | Revised Manuscript received on 15 July 2023 | Manuscript Accepted on 15 September 2023 | Manuscript published on 30 September 2023.

*Correspondence Author(s)

Dong Hwa Kim*, DSTSC (Daeduck S&T Social Cooperation, S.Korea.E-mail:koreahucare@gmail.com.,ORCIDID:0000-0002-0528-6736

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an <u>open access</u> article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

and ANIS (Artificial Immune System), for obtaining the optimal solution as one AI [6, 7, 8]. Still, they lack widespread interest due to their limited application. Many are interested in machine learning and deep learning, but these tools are one of many AI areas, as mentioned [9]. The education method, curriculum, and teaching method for K-12 are pretty crucial because AI areas are vast, and implementation methods depend on the curriculum and the teacher's AI thinking method [10-13]. Most countries, including South Korea, lack experts with experience in AI education in the K-12 sector. K-12 education is not a developing area for high technology; it is education for the AI of K12. It is one stage to provide manpower education for high-technology development. It is essential to teach because when we build a good AI curriculum, students can have interests (or motivation) and select this topic to study. Therefore, it is essential to have an experience through education [14-16]. There are two kinds to link with AI. The first one is to manage and operate in the education area. It involves document writing, a hobby of students, and statistics about educational operations. The second one is directly aimed at teaching AI, including coding, AI thinking, applications, economic impact, and job patterns, to prepare students for their future. Therefore, there are many subjects to teach, and one needs a lot of experience. In the case of South Korea, they began to nurture AI teaching in 2020. It means they do not have much time for a correct curriculum for AI teaching in the K-12 site [17][18]. Some teachers started to learn AI in 2019 at the master's course of the university, and they are publishing some papers to finish their course [19-22, 27-29]. This paper aims to develop a curriculum design method for Korean K-12 AI education based on the know-how obtained through long-term AI teaching experience at a university. This paper also provides several materials for the K-12 curriculum design.

II. SUMMARY OF AI EDUCATION HISTORY

Many areas, such as information technology, game theory, computer programming, and computer science, have long influenced AI education and development. It began in 1943 at the Dartmouth conference, and many game companies have been studying games using AI (machine learning). The most significant event was the AlphaGo accident with humans (Lee, Se-Dol) in 2016 [3] and the Litrabus AI tool of AI team of Carnegie Melon University, in 2017, won at game matching completely in 2017. Figure 1 illustrates the history of AI and games, while Figure 2

represents the impact of information technology on the vast network of AI.

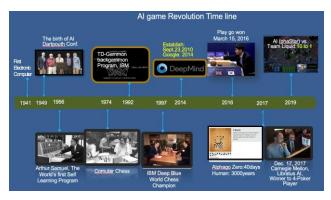


Figure 1. The history of AI and games [30, 31]

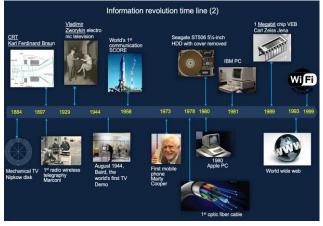


Figure 2. The history of information for AI [32, 33]

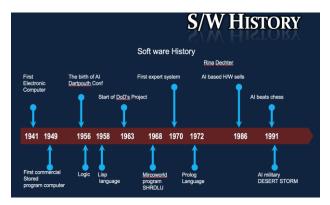


Figure 3. The History of AI S/W [34, 35]

With this mega network, the technology of current AI was developed. This history can differ depending on a person's opinion. Figure 3 illustrates the S/W development history. The influence of Python and PyTorch on AI history.

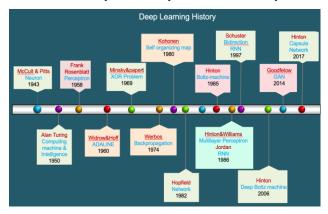


Figure 4. The History of Deep Learning [34, 36, 37]

Figure 4 illustrates the history of deep learning development. Many AI theories have been developed, such as RNN, GAN, and others.

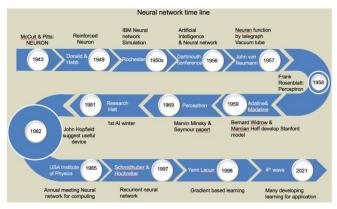


Figure 5. The History of Neural Networks

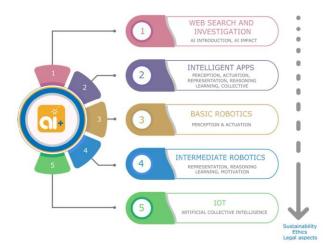
Figure 5 shows the history of deep learning. Deep learning has an overlapping history with neural network structure because it originated from neural networks. Figure 6 summarises Figures 3, 4, and 5. AI has two winter seasons. The first is 1974-1980, and the second is 1987-1993. During these seasons, many researchers thought that AI was not helpful. However, the ReLU function was developed, and its application has since increased rapidly.

Figure 6. The History of AI

III. ANALYSIS OF AI EDUCATION

Many have been interested in AI for a long time. However, as of 2018, most countries had implemented a policy. China introduced AI education for K-12 in 2018. Other countries have been concerned about AI education for K-12 since 2019 [24]. Therefore, there are very few materials for K-12 AI education and curriculum design. Ref. [25] illustrates the curriculum for the level of K-12. The general level and the exceptional level show it. Ref. reports on ETRI in S. Korea and shows effective AI education. References are presented from the USA, China, the UK, and Japan; however, this discussion is not specifically focused on AI education. Ref. describes the EU AI education curriculum.

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.



Retrieval Number: 100.1/ijrte.C78600912323 DOI: <u>10.35940/ijrte.C7860.0912323</u> Journal Website: <u>www.ijrte.org</u>

	Level	Unit	Topics	Tool	Hours	Weeks	Project
		1	Al Introduction	Google Slides	4	2	Web search real AI application
			App Inventor tutorial		8	4	•
	Intelligent	2	Perception and Actuation		6	3	The School Path Guide I
	Smartphone	3	Representation and reasoning	App Inventor	8	4	The School Path Guide II
	Apps	4	Learning		8	4	Capture it I
8		5	Collective Intelligence		4	2	Capture it II
9		6	Sustainability, ethics and legal aspects	Genial.ly	4	2	Myths & Truths
				Total	42	21	
8		7	Perception and Actuation (IR-motors-encoders)		6	3	Open-ended movement
	Basic Robotics	8	Perception and Actuation (orientation-camera)	Robobo & Scratch	6	3	Color search and collect
	Basic Robotics	9	Natural interaction (screen, speaker)	Scratch	8	4	Robobo pet
		10	Human-robot interaction (Impact of AI)	Podcast	2	1	Al tutoring systems
ľ				Total	22	11	
	TOTAL				64	32	
			Python fundamentals		10	5	
		11	Transition from Scratch to Python		8	5	TU7 & TU8
	Intermediate	12	Advanced perception & machine learning	Robobo &	8	2	Recycling
	Robotics	13	Reinforcement Learning	Python	8	4	Coverage with Q-learning
8	KODOLICE	14	Representation & Reasoning		10	5	Path Planning
8		15	Motivation (Impact of Al)	Canva	4	2	Artficial General Intelligence
8		15	woovation (impact of Xi)	Total	48	24	Artiicial General Intelligence
			Home Assistant Tutorial	Home Assistant	4	2	
		16	Ambient Intelligence	Home Assistant	8	4	Classroom automation
	Environments			& Python			
		17	Smart Environments (Impact of AI)	Thinglink	4	2	Sustainable Development Goa
				Total	16	8	
	TOTAL				64	32	

Figure 7 (a). The Curriculum Structure of Reference

Figure 7 (b). The Application Curriculum Structure of Reference

Figure (7a) is described in detail in Units 1-17. Figure 7b introduces application areas for AI curriculum design. Ref. illustrates the K-12 curriculum of the UK, Poland, Israel, and New Zealand. Ref describes the kindergarten curriculum. Ref. shows an AI curriculum example from the CSTA (Computer Science Teachers Association). Ref. introduces AI tools for K-12 education. Ref. describes the characteristics of AI education in the USA, Finland, Australia, and South Korea. The reference provides an overview of AI education, highlighting its impact on the economy and society. Ref. [5] describes the importance of AI education in K-12. Ref. introduces an example of AI education for K-12. Ref. introduces AI software for K-12 education, and Ref. is a paper on AI confusion. Ref. also showcases AI education in kindergarten. Ref. illustrates the core contents for AI education of K-12. Ref. explains why we should teach AI. From these analysis materials, we can see that there was no curriculum for K-12 AI education. Therefore, we must develop a curriculum for our AI education that combines both experience and study.

IV. AI AND EDUCATION

There are two kinds of AI and education. The first is to utilise AI as a complement to traditional education, and the second is to teach AI technology and its applications. Many small works include management, homework, quiz assignments, and student credit statistics for class operation

Retrieval Number: 100.1/ijrte.C78600912323 DOI: <u>10.35940/ijrte.C7860.0912323</u> Journal Website: <u>www.ijrte.org</u> and teaching activities. We can use AI tools for those activities. For those, the UNESCO report suggests AWS, Bidu, Easy DL, TensorFlow, IBM Watson, and Azure. The second AI education includes AI basics, principles, applications, coding, and other related topics. For those, we must design a good AI curriculum.

Table I: UNESCO AI Curriculum Areas.

Table I. UNESCO AI CUITCUIUM Areas.							
Category	Topic area	Competency and Curriculum Considerations					
	Algorithms and Programming	Together with data literacy, algorithms and programming can be viewed as the basis of technical management with AI.					
AI foundations	Data literacy	A major of AI applications run on big data. Managing the data cycle from collection to cleaning, labelling, analysis and reporting forms one of the foundations for technical engagement with using and/or developing AI. An understanding of data and its functions can also help students understand the causes of some of the ethical and logistical challenges with AI and its role in society.					
	Contextual problem-solving	AI is often framed as a potential solution to business-related or social challenges. Engaging at this level requires a framework for problem-solving in context, encompassing elements such as design thinking and project management. t-based learning					
Ethics and social	The ethics of AI	Regardless of technical expertise, students in future societies will engage with AI in their personal and professional lives – many do so from a young age already. It will be essential for every citizen to understand the ethical challenges of AI and the avenues for redress in cases of unethical or illegal AI use, such as instances that contain harmful bias or violate privacy rights.					
impact	The social or societal implications of AI	The social impacts of AI range from requiring adjustments to legal frameworks for liability to inspiring transformations of the workforce. Survey respondents were asked about the extent to which their curricula targeted these issues. Trends such as workforce displacement, changes to legal frameworks, and the creation of new governance mechanisms were given as examples.					

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

74

		AI has a wide range of applications outside of computer science. The survey			which can lead to support for policies that restrict how firms can utilise AI.	
	Applications of AI to domains other than ICT	asked participants whether and to what extent AI applications in other domains were considered. Art, music, social studies, science and health were given as examples.	Data and AI	Data accessibility	. Relevant federal agencies should support the development of shared pools of high-quality, application-specific training and validation data in key areas of public interest, such as	
		This area included (1) the extent to which theoretical understandings of AI processes were developed (e.g. defining			agriculture, education, healthcare, public safety and law enforcement, and transportation.	
	Understanding and using AI techniques	or demonstrating patterns, or labelling parts of a machine learning model); and (2) the extent to which students used existing AI algorithms to produce outputs (e.g. training a classifier). Machine learning, including supervised and unsupervised learning, deep	Data and AI	Data development and trust	. Relevant federal agencies, including the Department of Commerce and the Department of Health and Human Services, should develop and pilot data trusts to facilitate data sharing in specific application areas among academia, businesses, and government agencies.	
		learning, and neural networks, was presented as examples of AI techniques.			. Federal agencies, such as the Department of Housing and Urban Development (HUD), the Department of Health and Human	
Understanding, using and developing AI	Understanding and using AI technologies	AI technologies are often human-facing applications which may be offered 'as a service'. NLP and computer vision were given as examples. Respondents were asked about the extent to which learners used existing AI technologies to complete tests of projects	Data and AI	Digital transformation	Services (HHS), the Departmen of Transportation (DOT), and the Federal Energy Regulator Commission (FERC), shoul identify and implement policies that can drive digits transformation in their respective sectors.	
		to complete tasks of projects, and/or study the processes of creating these technologies. Developing AI technologies	Data and AI	Policymakers	Policymakers should consider a range of approaches to encourage the private sector to share data for the public benefit.	
	Developing AI	involves creating new AI applications that address social challenges or provide innovative services. It is a specialised field that requires	Data and AI	Data open	Congress should pass legislation codifying the federal government's responsibility to publish open data.	
	technologies	knowledge of a range of complex techniques and skills in coding, mathematics (especially statistics), and data science.	Data and AI	Data poverty	Relevant federal agencies should ensure that data collection efforts emphasise reducing the "data divide" and combating data poverty.	
T.I.I. 1		atom Report (2018)			Congress should ensure that any	

Table II (a): USA AI Strategy Report (2018)

Item		Description
National AI strategy	Support key AI organizational inputs	High-value data, AI skills, publicly funded R&D
National AI strategy	Accelerate public-sector adoption of AI, including national security	One of the most straightforward and practical steps the government can take to spur AI progress is to adopt AI in support of its missions rapidly.
National AI strategy	Spur AI development and adoption in industry, including through sector-specific AI strategy	Federal agencies should be charged with developing sector-specific AI strategies to shape their policies affecting these industries in ways that support A. I transformation $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$
National AI strategy	Support digital free trade policies.	Data is at the core of AI, and many nations are enacting policies that restrict cross-border data flows.
National AI strategy	Foster innovation-friendly regulation	If poorly implemented, AI can produce undesirable outcomes
National AI strategy	Provide workers with better tools to manage AI-driven workforce transitions.	AI-enabled automation is expected to increase productivity and per-capita incomes. Still, it will also likely modestly increase the rate of worker displacement,

as e, w n. s, of of s, ta in ng nd ıe an ıe an nt he ry ld es al /e а ze or on al to ld ts ta ta any ensure national legislation addressing Data and AI data sharing privacy considers the importance AI of data for the development and use of AI. SEP Developing Congress should invest in Investment in AI AT talent cultivating AI talent. Congress should fund and authorise a program at the NSF to Developing AI manpower provide competitive awards for up AT talent to 1,000 academic AI researchers for five years. [SEP] Congress should enable more foreign AI talent to work in the Developing Foreigner VISA for United States by increasing the AT talent cap on H-1B visas to ensure U.S. AI firms can hire as much AI talent as they need. SEP Federal agencies should address barriers that limit the number of Developing No-barriers students able to take computer AT talent science courses at the university level. SEP

Published By:

AI R&D	R&D funding for AI basics	Congress should substantially increase funding for research and development (R&D) in AI, with an emphasis on both basic and applied research.
AI R&D	R&D funding for AI applications	Federal agencies should support R&D for all kinds of AI applications.
AI R&D	Tax-free for AI R&D	Congress should increase the R&D tax credit to keep pace with the tax credits offered by competing countries.

Table II (b) USA AI Strategy Report (2018)

Item		Description
	Community	Congress and the administration should support efforts to foster communities of practice and raise awareness about AI within the public sector.
	Ventur capital	Congress should provide agencies with venture capital funds to pilot AI initiatives.
	Spur AI	Federal agencies should establish domain-specific programs to spur AI adoption.
	The role of the White House	The White House should establish a strategic initiative focused on AI within the Council of Economic Advisers.
	GSA (General Services administry)	GSA should work with state government CIOs to share best practices for AI implementation and develop shared resources $\frac{1}{24p}$
	Defence AI using	Defence agencies should prioritise the use of AI to support their missions in protecting national security.
Transforming	Defence and Industry	The Department of Defence (DoD) should establish a joint body comprising both government and industry stakeholders to expedite the adoption of dual-use AI technologies by the military.
Government With AI	Cross-agency of DoD	The Department of Defence (DoD) should establish a cross-agency task force to identify opportunities to simplify the acquisition process for artificial intelligence (AI).
	Procurement of DoD	The Department of Defence (DoD) should pursue and expand the use of alternative acquisition mechanisms as a workaround for cumbersome procurement policies.
	Relationship of DoD	DoD should foster better relationships between the defence community and the U.S. technology industry.
	AI's new program for the DoD	The Department of Defence (DoD) should establish a new Program Element (PE) specifically for AI to increase the visibility of AI appropriations.
	AI adoption in the DoD	Congress should prioritize the development and adoption of AI in defense spending.
	AI adoption for National security	Congress and the administration should support productive discussions about the most effective way to oversee the use of AI for national security.
	AI Benefits for	Congress and the administration

	National Security	should recognise the benefits of AI to national security.
	Supporting AI adoption	Federal agencies should collaborate with industry to develop strategies for promoting AI adoption in relevant sectors. of the economy
Spurring AI Development and Adoption in Industry	AI application	The Department of Commerce should establish organisations dedicated to advancing the development of innovative AI applications across various sectors.
	Foster AI	Congress should direct the Economic Development Administration to enable state governments to foster the development of the AI industry.
Ensuring trade policy supports AI	Foster AI	The United States Trade Representative (USTR) should continue to advocate for cross-border data flow protections in all future trade negotiations.
	Intellectual property	USTR should continue to fight source code disclosure requirements that other nations may enact to unfairly disadvantage U.S. firms or exploit their intellectual property.

A. UNESCO K-12 Curriculum

Table 1 shows the contents suggested by UNESCO for the K-12 AI curriculum. This table comprises three primary sections: AI Basics, AI Ethics and Social Issues, and AI Development. Of course, an AI teacher or school should decide the detailed contents or subjects. Finland has a strong education system in K-12, and it fosters competitiveness because teachers can choose their subjects based on their own opinions and ideas. AI education results can vary depending on the teacher's ideas and teaching style (H/W, S/W, and teaching content) because there are few education experts and limited experienced materials.

B. USA AI Curriculum

a. AI education policy

Ref. Joshua New has suggested an idea for teaching as part of the USA AI initiative. He insists that China, France, and the UK have a firm policy for AI education, whereas the USA has a weak policy in this area. He suggests that the USA should establish and implement initiatives for national security (Table 2). Table 2 outlines the need for a national AI policy, AI security, data research and development, and defence AI.

Table 2 C deals with AI regular issues, data, AI applications, and a new law for AI.

b. Discussion about USA AI education

USA describes AI education in the references. In Table 2, they suggest computing, networking, data, algorithms, programming, and AI research and development.

C.Canada AI curriculum

a. The Basic AI curriculum

Canada's AI technology and its capabilities rank among the strongest in the AI area. McGill

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.C78600912323 DOI: 10.35940/ijrte.C7860.0912323 Journal Website: www.ijrte.org

University and the University of Toronto have excellent capabilities and infrastructure, thanks to their effective policies and AI education systems. Samsung built its R&D centre in 2018

(https://research.samsung.com/aicenter toronto).

To understand the Canadian AI system, we must realise the Canadian S&T education system because Canada has an AI education system within the S&T education system [22]. Within this area, AI education has basic content:

- All students can have their digital projects. •
- Critically assess how technology works and shapes our world.
- Use technology to improve our world [24].

Table III: Canada AI Education Basic.

Ares	Contents
Programming	Algorithms, Data structures, Modularity, Modelling & Abstraction, Debugging
Computing and Network	H/W & S/W Connected device Troubleshooting Digital connectivity Cyber-security
Data	Storing data, Collecting, Organising, & Visualizing data, Modelling & Interfacing Applications of AI & Machine learning, Data governance
Technology and Society	Social impacts of digital technologies Digital communication Ethics, Safety, & the law Technology & the environment History of technology Technology & Wellbeing
Design	Program design, User design, Visual design, Universal design

b. Discussion about Canada AI education

Table 3 illustrates the basic contents of AI education in Canada [22, 27]. This content includes algorithms, modelling, debugging, and computer networks (hardware and software), as well as digital security. They have strategies such as data saving, data connection, data visualisation, and applications of deep learning and machine learning. Data is crucial for AI, as the system requires it to function effectively.

D. Finland AI Education Curriculum

a. Basic AI curriculum

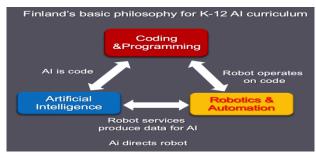
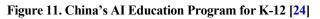


Fig. 8. Finland AI Basic Philosophy.

Figure 8 shows the Finnish AI education concept [26]. They have a basic philosophy centred on AI, coding, and robotics. It is essential to code for AI education and to implement it to achieve AI education results. So, they use robot implementation methods. The AI education stage is a 10-step process that encompasses positive steps, thinking styles, technology, and computational thinking.

Figure 9. The Structure of Finland AI Education [26]

E. China AI Education Curriculum


China's AI capability, the number of researchers, and technology are at a top level in the world [23, 24]. The AI education at Chain Primary School focuses on real-life applications using a bike robot, traffic signals, AI robots, and Arduino programming. This is intended to provide students with a deeper understanding of AI and offer some motivation for its development. They provide knowledge for Junior high school AI education by a strong strategy [24, 25].

	Overall	Taler	it Intra	structu Oper	re ating F	Rese	ment Jarch Devel	opmer	Gove	comn	strate
	÷	÷	¢	4		÷	4		÷	÷	
United State	s 🚺	1	1	28		1	1		8	1	
China	2	20	2	3		2	2		3	2	
Singapore	3	4	3	22		3	5	******	16	4	
United Kingo	L (4)	5	24	40		5	8		10	5	
🔹 Canada	5	6	23	8		7	11		5	7	
🤹 South Korea	6	12	7	11		12	3		6	18	
o Israel	7	7	28	23		11	7		47	3	
Germany	8	3	12	13		8	9	******	2	11	
Switzerland	9	9	13	30	******	4	4		56	9	
Finland	10	13	8	4		9	14		15	12	

Figure 10. Global AI index [23]

China has an AI roadmap, as illustrated in Figure 11, which extends to 2030. Table 4 shows China AI content for primary and high school [26]. China has an AI education program from kindergarten and uses simple traffic signals, chairs, and desks for AI teaching [24, 25, 26].

In high school, they introduce AI engineering concepts for visual expression, programming, and experience expression. They

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Published By:

A Smology and Engi to reunor reuopeut Blue Eyes Intelligence Engineering

Retrieval Number: 100.1/ijrte.C78600912323 DOI: 10.35940/ijrte.C7860.0912323 Journal Website: www.ijrte.org

teach theory, programming, inference, search engines, logical inference, and knowledge.

Table IV: AI Curriculum of China K-12 (* is This Paper Author's Opinion, not in the Original Curriculum).

Item	Contents	Goals
Pre-school	Unplugged activities for those familiar with robots or intelligent agents	Expression Song, Wake-up Song, Dress-up Song, Small Mirror, Ting-a-Ling, Magazines, Take a Walk in Park, Chairs, Desk, TV, Mom's Couch, My Tiny Closet, Knife, Small Bridge, I Love Guitar, Small Sheep, Fox, Monkey, Tricycle, Red Light Green Light, Greedy Bear Bobby, Monkey goes to School)
Elementary school	Introductory Programming with Scratch and Python	Programs named 'New Friend', 'Twinkling Star', etc., Sensing the surrounding environment with Arduino, Familiar with a variety of robots (e.g., AI Robot, Motorcycle Robot, Traffic Light Robot, etc.)
Middle school	*Understand the working principle of AI algorithms. Conduct preliminary programming	Introduction to AI, Perceptions of AI, Use many sensors, Solve problems through data and algorithms, Python programming (basic and application)
High school	*Working principle of AI algorithms. Conduct mediate programming	Weak AI, AI Ethics, Introduction to NLP, AI Language, Parts of Speech, Natural Language Processing, Word Vectors, Syntax Parsing, Information Extraction, Knowledge Map, Problem Solving, Logic Inference, Expanding Logic Inference, Recognition Framework, Train Decision Tree, Search Engines

Table V: S/W Education (AI Curriculum) of Primaryschool (Korea).

Category	Grades 1-2	Grades 3-4	Grades 5-6
AI Understanding	AI story (smart robot)	Strong AI Weak AI	Understanding of big data Conceptual understanding of AI Implementation
AI and Data	Various data (video, image, sound, text)	Number guessing with hints	Make aware in a new situation based on the previous data Make a new situation based on the data
AI Algorithm	Classification Finding	Reactions under conditions	Classification by data
AI implementation	AI robot	Machine learning (Classification)	AI-derived artefacts
AI and Impacts	Changing by AI	Commonalities & Differences of human-AI	The fourth industrial revolution AI ethics

V. KOREA AI EDUCATION AND CURRICULUM

A. Why We Must Design an AI Curriculum?

Korea AI curriculum program from September 2020 [27, 28, 29]. So, there was no public school before March 2020. The Korean government recognises the importance of AI education. Therefore, they announced that primary school will be introduced in Sept 2020 for grades 1 and 2 of primary school [28] The vice ministry of education of the South Korean government announced that they will offer an AI education program for primary schools from September

Retrieval Number: 100.1/ijrte.C78600912323 DOI: <u>10.35940/ijrte.C7860.0912323</u> Journal Website: <u>www.ijrte.org</u> 2020, after testing in March 2019 [28]. They also provided an AI education program for high school students from September 2021. The local education office planned an AI education program linked with software education for Primary school and middle school. They plan to provide an advanced AI curriculum for K-12 AI education until 2025. Table 5: AI education curriculum of primary school. For these educations, the government announced that the plans for the nurture program of AI teachers' master course for schools on Nov. 7, 2019 [29]. Therefore, the teacher's master's degree in AI education is expected to be completed by the end of 2022. It means there is no experience in education and AI curriculum design. [18, 19, 20, 21, 27, 28, 29]. This paper aims to provide a good AI curriculum through AI education and site experiences. It is quite an experience to nurture manpower. Especially, the curriculum design for AI education requires AI education experience for effective teaching as a specialised knowledge area. However, there are still very few people in K-12 with expertise. Herein, we have to provide an AI education curriculum.

B. Analysis for a Good AI Curriculum Design

UNESCO has three core contents:

- AI algorithm and programming with data, data collection, labelling, and analysis, and business and social related AI for K-12 AI education;
- Understanding the ethical challenges of AI for Personal & citizen, social impacts of AI for the workplace, AI applications outside of computer science for frameworks;
- Theoretical understanding of AI, Human-facing applications, and the creation of new AI.

C. K-12 AI Curriculum

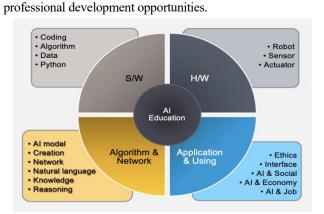
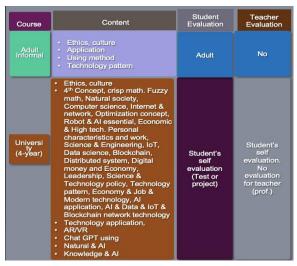


Figure 12. Education Philosophy.

As the previous part of this paper described, South Korea started its K-12 AI education program in November 2019, and officially, there were no AI teachers in the K-12 education system. They started the AI teacher's master's program in 2020. It means that there are no experts in the K-12 education site. To address this issue, this paper aims to develop a K-12 AI education curriculum and documentation materials in a Korean style. Essentially, AI education is a program within the K-12 education system. Therefore, it encompasses the fundamental national philosophy and the school's purpose. Figure 12

illustrates the primary purpose of education for these targets. For this purpose, teachers must develop their teaching style through seminars, workshops, and other

DURTE


Figure 13. AI Basic Education Contents.

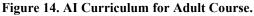

Figure 13 illustrates the fundamental concept of this paper for a K-12 AI education curriculum. This basic idea of the paper is used and written for this purpose. AI is one of the technologies. To use it effectively, we must understand related technologies and literature. Figure 14 illustrates the designed AI curriculum for K-12, including kindergarten.

Table VI: Suggested AI Curriculum for K-12.

Category	Education area	Curriculum Contents
AI foundations	Algorithms and Programming	AI algorithms (machine learning model, training a classifier, Machine learning in general, supervised and unsupervised learning, reinforcement learning, deep learning, and neural networks), AI programming (Loop, Condition, Statement, Modeling/A&Abstract, Debugging), Machining/Deep learning, Pyhton, Pytorch, AI Model, Speech recognition, Image classification, Text recognition, Multi-recognition
AI foundations	Data literacy	AI applications run on big data. Managing the data cycle from collection to cleaning, labelling, developing/using for AI. Understanding of data and its functions, Data ethics, Data for AI and society, Data and Machine Learning.
AI foundations	Contextual problem-solving	AI for the solution to business-related or societal,
AI foundations	Knowledge & Computational thinking	AI-based thinking, Thinking-based AI, Knowledge development for new AI, Inferences and AI, Natural and AI, Smart life, AI and human being mind
Country Philosophy & Ethics	The ethics of AI	Philosophy and Korean culture, AI ethics, AI law and safety, AI and society, ChatGPT and AI, Global society and AI trend
Social & Job	Economy & Job	Technology and Economic Development, Digital Technology and Impact, Technology and Smart Life, AI Technology and Economy, AI and New Jobs/Disappearing Jobs, ChatGPT, Preparing for the Future/J. Oh, Job changing

Social & The social ΑI and Job social impact, transforming & pattern Job impact of AI AI and computer science, AI and industry, AI and data, AI and Developing Using AI music, AI and art (Music, Figure, & Using AI techniques Design, Novel, Story-telling), ChatGPT Knowledge for the creation of new AI applications AI Knowledge and service for a Developing Developing AI social challenge, or provide technologies & Using AI (coding, mathematics, data science, program design, visual design, universal design, user design)

Course	Content	Student Evaluation	Teacher Evaluation
High school (3- year)	 Ethics, Culture 4th Concept, crisp math. Fuzzy math, Natural society, Computer science, Internet & network, Optimization concept, Robot & AI basic, Economic & High tech. Personal characteristics and work, Science & Engineering, Data science, Network principle, Distributed system, Network device, IoT society & Job, Leadership, Digital money, VR, AR, Knowledge thinking, Project and Creative 	The level of	The level of
Middle school (3- year)	 Ethics, Culture 4th Concept, crisp math. Fuzzy math, Natural society, Computer science, Internet & network, Optimization concept, Robot & Al basic, Economic & High tech. Personal characteristic and work, Data principle, Network principle, Digital money, Knowledge & creative thinking Project 	student's understandi ng of subject	student's understandi ng of subject
Primary Course (6- year)	 Ethics, Culture, 4th concept, toy-based AI, Tech. & Leadership, AI algorithm, Data, Creative thinking project 		
Kinder- garten	 Al-thinking, Positive tech. Play &Toy based Al learning & Teaching 	play and toy	Evaluation for teacher's playing

Figure 15. AI Curriculum for K-12.

Figure 16. Designed an AI Curriculum for K-12

VI. CONCLUSION

This paper provides materials and methods for how lecturers can effectively teach students and beginners, drawing on the author's teaching experience. OpenAI released ChatGPT3.5 in December 2021, and they opened ChatGPT4.0 in March 2023. Its impact is profound in education systems, such as K-12. This means that the education system should prepare for the effects of AI on traditional education. <u>Table 6</u> and <u>Figure 16</u> show the designed Korean AI education curriculum. Of course, for this design, this paper analysed the previous material. Provides educational material for machine learning and deep learning by using simple tools online. The left column of <u>Figure 16</u> represents the education level of AI. An AI will have an impact on student and their job. Therefore, the curriculum should prepare them for their lives [37].

ACKNOWLEDGMENT

These works were supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1056145). The author would like to thank the Korean government (MSIT) for its support.

DECLARATION STATEMENT

Funding/ Grants/ Financial Support	Yes, the National Research Foundation of Korea (NRF) grant was funded by the Korean government's Ministry of Science and ICT (MSIT) (No. 2021R1F1A1056145). The author thanks the Korean government (MSIT) for its support.
Conflicts of Interest/	No conflicts of interest to the
Competing Interests	best of our knowledge.
Ethical Approval and Consent to Participate	No, the article does not require ethical approval or consent to participate, as it presents evidence that is not subject to interpretation.
Availability of Data and Material/ Data Access Statement	Not relevant.

Retrieval Number: 100.1/ijrte.C78600912323 DOI: <u>10.35940/ijrte.C7860.0912323</u> Journal Website: <u>www.ijrte.org</u>

Authors (Contributions	I am the sole author. of the
Autions Contributions.	article

REFERENCES

- Brady D. Lund, "A Brief Review of ChatGPT: Its Value and the Underlying GPT Technology," University of North Texas. DOI:10.13140/RG.2.2.28474.06087, 2023.
- Brady D. Lund and Ting Wang, "Chatting about ChatGPT: How may AI and GPT impact academia and libraries?," DOI: 10.1108/LHTN-01-2023-0009, 2023. <u>https://doi.org/10.1108/LHTN-01-2023</u>-0009
- 3. https://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go
- I. A. Zadeh, "Fuzzy sets," Information and Control 8, 338-353, 1965. <u>https://doi.org/10.1016/S0019-9958(65)90241-X</u>
- James McCaffrey, "AI-PSO Microsoft," Vol. 26, No. 8, 2021, https://learn.microsoft.com/en-us/archive/msdn-magazine/2011/augus t/artificial-intelligence-particle-swarm-optimization
- Huang Chen et al. "Bacterial Foraging Optimization Based on Self-Adaptive Chemotaxis Strategy," Computational Intelligence and Neuroscience, pp. 1-15, 2020. <u>https://www.hindawi.com/journals/cin/2020/2630104/</u> <u>https://doi.org/10.1155/2020/2630104</u>
- Jerome H. Carter, "The Immune System as a Model for Pattern Recognition and Classification," J Am Med Inform Assoc., Vol. 7, No. 1, pp. 28-41. doi: 10.1136/jamia.2000.0070028, 2020. https://doi.org/10.1136/jamia.2000.0070028
- A. de Callatay, "Natural and artificial intelligence," Elsevier, https://www.elsevier.com/books/natural-and-artificial-intelligence/decallatay/978-0-444-89081-8,1992.
- Digital promise, https://digitalpromise.org/initiative/computational-thinking/computati onal-thinking-for-next-generation-science/what-is-computational-thin king/, 2023.
- 10. Teach Your Kids Code (2023). https://teachyourkidscode.com/what-is-computational-thinking/
- 11. University of York (2023). https://online.york.ac.uk/what-is-computational-thinking/
- 12. Jeannette M. Wing (2006). Computational thinking. Communication of the ACM, 49(3), 33-35, 2006. https://doi.org/10.1145/1118178.1118215
- Weipeng Yang, "AI education for young children: Why, What, How in curriculum design and implementation," Computer and Education: AI, 3.

https://www.sciencedirect.com/science/article/pii/S2666920X220001 69?via%3Dihub

- Allison Slater Tate, "How will AI like ChatGPT change education for our children, "https://www.parents.com/how-will-ai-technology-change-education-7100688, 2023.
- 15. UNICEF, "Policy guidance on AI for children," 2021. https://www.unicef.org/globalinsight/media/2356/file/UNICEF-Globa l-Insight-policy-guidance-AI-children-2.0-2021.pdf
- Bold, https://bold.expert/technology/?filter-category%5B%5D=education-te chnology-technology&gclid=Cj0KCQjww4-hBhCtARIsAC9gR3aJC WHu0LzYNBGqGoZ6A1lb6Lb2y-6f—lhdiBSV1UJeaon3ID_bcIaA nj9EALw_wcB, 2023.
- Eungkyoung Lee, "Comparative Analysis of Contents Related to Artificial Intelligence in National and International K-12 Curriculum. The Korean Association of Computer Education, Vol. 25, No. 1, pp. 1-16, 2020. https://doi.org/10.32431/kace.2022.25.1.001
- Soonhwan Kim et al. "Review on Artificial Intelligence Education for K-12 Students and Teachers," The Korean Association of Computer Education, Vol. 23, No. 4, PP. 1-11. https://doi.org/10.32431/kace.2020.23.4.001, 2020.
- Yeonju et al. "Development and Application of Modular Artificial Intelligence Ethics Education Program for Elementary and Middle School students," The Korean Association of Computer Education, Vol. 25, No. 5, PP. 1-14. https://doi.org/10.32431/kace.2022.25.5.001, 2022.

 Seulki Kim et al. "A Study on Educational Dataset Standards for K-12 Artificial Intelligence Education," The

Korean Association of Computer Education, Vol . 25, No. 1, PP. 29-40.

https://doi.org/10.32431/kace.2022.25.2.003, 2022.

- Melissa, "Learning for the Digital World: A Pan-Canadian K-12 Computer Science Education Framework," Framework Advisory Group and Engagement and Development Team, PP. 1-53, 2019.
- https://www.zdnet.com/article/ai-arms-race-this-global-index-rankswhich-nations-are-dominating-ai-development/
- https://www.tortoisemedia.com/intelligence/global-ai/
 23. Xiaoting (Maya) Liu, "Nurturing the Next-Generation AI Workforce: A Snapshot of AI Education in China's Public Education System," Asia Pacific Foundation of Canada, PP. 1-14. https://www.asiapacific.ca/publication/nurturing-next-generation-aiworkforce-snapshot-ai-education, 2022.
- Xiaoyan Gong, "AI Educational System for Primary and Secondary Schools. American Society for Engineering Education," 126th Annual conference, 2019.
- 25. Jiahong Su et al. "A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education," Artificial Intelligence, 3, https://doi.org/10.1016/j.caeai.2022.100065, 2022. https://doi.org/10.1016/j.caeai.2022.100065
- Chung-Ang University, "AI education for K-12 in Canada and S. Korea," PP. 1-24, 2021 https://www.reportlinker.com/p05478480/Global-Artificial-Intelligen ce-AI-Industry.html?utm_source=PRN.
- 27. K12 Computer science framework, "The K-12 Computer Science Framework, led by the Association for Computing Machinery, Code.org," Computer Science, 2016.
- 28. UNESCO 2021, "AI and education", https://creativecommons.org/licenses/by-sa/3.0/igo/
- 29. K-12 AI curricula, ED-2022/FLI-ICT/K-12, 2022. <u>https://blog.fetc.org/k-12-educators-guide-to-using-artificial-intellige</u> nee/
- Artificial Intelligence (AI) education for K-12 Schools, STEM Kit Review (2022). https://stemkitreview.com/artificial-intelligence-ai-education-for-k-12 -schools/
- 31. https://appinventor.mit.edu/explore/ai-with-mit-app-inventor
- 32. Pati Ruiz, "Artificial Intelligence in Education: A Reading Guide Focused on Promoting Equity and Accountability in AI," 2022. https://circls.org/educatorcircls/ai-in-education/ai-in-ed-reading-guide
- 33. Machine learning for kids. https://machinelearningforkids.co.uk
- 34. Why Choose to Include an Artificial Intelligence Course in K-12 Curriculum?

https://knowledge-hub.com/2020/01/24/the-benefits-of-incorporatingartificial-intelligence-in-k-12-education/

- 35. K-12 schools can utilise it to enhance students' online engagement. https://www.thetechedvocate.org/basic-insurance-online-training-cou rses/
- Dong Hwa Kim (2022). How to teach and Learn AI. Outskirts Press, USA.
- Dong Hwa Kim, "4th wave and Africa! It will be chance or risk? Amazon, 2020.

AUTHORS PROFILE

Dong Hwa Kim, Ph.D.: Dept. of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering (AI Application for Automatic control), TIT (Tokyo Institute of Technology), Tokyo, Japan. He worked at Hanbat National University (Dean, Prof., S. Korea); Professor at Electrical Power and Control Engineering, Adama Science and Technology. Uni., Ethiopia; TDTU, Vietnam. He has experience

working at numerous universities overseas as a professor. He was the NCP of EU-FP7 (European Union Framework Programme for Research and Innovation in ICT). He was a keynote speaker at several international conferences and universities. He has 200 papers in journals and conferences and universities. He has 200 papers in journals and conferences. He is reviewing IEEE and others' journals. He is currently a researcher at the Seoul national university of S&T. He published many books and papers such as Innovation tuning based on biotechnology (USA, Dec. 2017), 4th wave Status and preparation of Visegrad Group Country (Germany, 2019), How to They Education in the Famous Univ. (2019), Africa and 4th Wave: Will it risk or Chance? (Amazon, 2020), How to teach and Learn AI (Outskirt Press, USA, Aug. 2022), A Study on Reinforcement of Self-Directed Learning Using Controlling Face Emotion (Paper, Jan. 2022), Advanced Lectures for PID Controller of Nonlinear System in Python (IJRTE, March 2021), Dynamic Decoupling and Intelligent Optimal PID Controller Tuning Multivariable Qua-drones

Retrieval Number: 100.1/ijrte.C78600912323 DOI: <u>10.35940/ijrte.C7860.0912323</u> Journal Website: <u>www.ijrte.org</u> (IJRTE (Scopus), Dec. 2021), Failure Prediction of Wind Turbine using Neural Network and Operation Signal (IJRTE, Dec. 2021), and 200 papers.

- Home page: www.worldhumancare.wixsite.com/kimsite
- Research citations: <u>https://www.researchgate.net/profile/Dong_Kim53</u>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)/ journal and/or the editor(s). The Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

